- Convert all markdown files from Chinese to English - Remove all emoji/icon decorations (🔧📋⚙️✅🏁🔍📚⛔⭐) - Update all section headers, descriptions, and documentation - Keep all content logic, structure, code examples unchanged - Maintain template variables and file paths as-is Files converted (9 files total): - SKILL.md: Output structure comments - templates/skill-md.md: All Chinese descriptions and comments - specs/reference-docs-spec.md: All section headers and explanations - phases/01-requirements-discovery.md through 05-validation.md (5 files) - specs/execution-modes.md, skill-requirements.md, cli-integration.md, scripting-integration.md (4 files) - templates/sequential-phase.md, autonomous-orchestrator.md, autonomous-action.md, code-analysis-action.md, llm-action.md, script-template.md (6 files) All 16 files in skill-generator are now fully in English.
8.7 KiB
LLM Action Template
LLM action template for integrating LLM call capabilities into a Skill.
Purpose
Generate LLM actions for a Skill, call Gemini/Qwen/Codex through CCW CLI unified interface for analysis or generation.
Usage Context
| Phase | Usage |
|---|---|
| Optional | Use when Skill requires LLM capabilities |
| Generation Trigger | User selects to add llm action type |
| Tools | gemini, qwen, codex (supports fallback chain) |
Configuration Structure
interface LLMActionConfig {
id: string; // "llm-analyze", "llm-generate"
name: string; // "LLM Analysis"
type: 'llm'; // Action type identifier
// LLM tool config
tool: {
primary: 'gemini' | 'qwen' | 'codex';
fallback_chain: string[]; // ['gemini', 'qwen', 'codex']
};
// Execution mode
mode: 'analysis' | 'write';
// Prompt config
prompt: {
template: string; // Prompt template path or inline
variables: string[]; // Variables to replace
};
// Input/Output
input: string[]; // Dependent context files
output: string; // Output file path
// Timeout config
timeout?: number; // Milliseconds, default 600000 (10min)
}
Template Generation Function
function generateLLMAction(config) {
const { id, name, tool, mode, prompt, input, output, timeout = 600000 } = config;
return `
# ${name}
## Action: ${id}
### Execution Logic
\`\`\`javascript
async function execute${toPascalCase(id)}(context) {
const workDir = context.workDir;
const state = context.state;
// 1. Collect input context
const inputContext = ${JSON.stringify(input)}.map(f => {
const path = \`\${workDir}/\${f}\`;
return Read(path);
}).join('\\n\\n---\\n\\n');
// 2. Build prompt
const promptTemplate = \`${prompt.template}\`;
const finalPrompt = promptTemplate
${prompt.variables.map(v => `.replace('{{${v}}}', context.${v} || '')`).join('\n ')};
// 3. Execute LLM call (with fallback)
const tools = ['${tool.primary}', ${tool.fallback_chain.map(t => `'${t}'`).join(', ')}];
let result = null;
let usedTool = null;
for (const t of tools) {
try {
result = await callLLM(t, finalPrompt, '${mode}', ${timeout});
usedTool = t;
break;
} catch (error) {
console.log(\`\${t} failed: \${error.message}, trying next...\`);
}
}
if (!result) {
throw new Error('All LLM tools failed');
}
// 4. Save result
Write(\`\${workDir}/${output}\`, result);
// 5. Update state
state.llm_calls = (state.llm_calls || 0) + 1;
state.last_llm_tool = usedTool;
return {
success: true,
output: '${output}',
tool_used: usedTool
};
}
// LLM call wrapper
async function callLLM(tool, prompt, mode, timeout) {
const modeFlag = mode === 'write' ? '--mode write' : '--mode analysis';
// Use CCW CLI unified interface
const command = \`ccw cli -p "\${escapePrompt(prompt)}" --tool \${tool} \${modeFlag}\`;
const result = Bash({
command,
timeout,
run_in_background: true // Async execution
});
// Wait for completion
return await waitForResult(result.task_id, timeout);
}
function escapePrompt(prompt) {
// Escape double quotes and special characters
return prompt.replace(/"/g, '\\\\"').replace(/\$/g, '\\\\$');
}
\`\`\`
### Prompt Template
\`\`\`
${prompt.template}
\`\`\`
### Variable Descriptions
${prompt.variables.map(v => `- \`{{${v}}}\`: ${v} variable`).join('\n')}
`;
}
function toPascalCase(str) {
return str.split('-').map(s => s.charAt(0).toUpperCase() + s.slice(1)).join('');
}
Preset LLM Action Templates
1. Code Analysis Action
```yaml id: llm-code-analysis name: LLM Code Analysis type: llm tool: primary: gemini fallback_chain: [qwen] mode: analysis prompt: template: | PURPOSE: Analyze code structure and patterns, extract key design features TASK: • Identify main modules and components • Analyze dependencies • Extract design patterns • Evaluate code quality MODE: analysis CONTEXT: {{code_context}} EXPECTED: JSON formatted analysis report with modules, dependencies, patterns, quality_score RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md) variables: - code_context input:
- collected-code.md output: analysis-report.json timeout: 900000 ```
2. Documentation Generation Action
```yaml id: llm-doc-generation name: LLM Documentation Generation type: llm tool: primary: gemini fallback_chain: [qwen, codex] mode: write prompt: template: | PURPOSE: Generate high-quality documentation based on analysis results TASK: • Generate documentation outline based on analysis report • Populate chapter content • Add code examples and explanations • Generate Mermaid diagrams MODE: write CONTEXT: {{analysis_report}} EXPECTED: Complete Markdown documentation with table of contents, chapters, diagrams RULES: $(cat ~/.claude/workflows/cli-templates/protocols/write-protocol.md) variables: - analysis_report input:
- analysis-report.json output: generated-doc.md timeout: 1200000 ```
3. Code Refactoring Suggestions Action
```yaml id: llm-refactor-suggest name: LLM Refactoring Suggestions type: llm tool: primary: codex fallback_chain: [gemini] mode: analysis prompt: template: | PURPOSE: Analyze code and provide refactoring suggestions TASK: • Identify code smells • Evaluate complexity hotspots • Propose specific refactoring plans • Estimate refactoring impact scope MODE: analysis CONTEXT: {{source_code}} EXPECTED: List of refactoring suggestions with location, issue, suggestion, impact fields RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md) variables: - source_code input:
- source-files.md output: refactor-suggestions.json timeout: 600000 ```
Usage Examples
Using LLM Actions in Phase
```javascript // phases/02-llm-analysis.md
const llmConfig = { id: 'llm-analyze-skill', name: 'Skill Pattern Analysis', type: 'llm', tool: { primary: 'gemini', fallback_chain: ['qwen'] }, mode: 'analysis', prompt: { template: ` PURPOSE: Analyze design patterns of existing Skills TASK: • Extract Skill structure specification • Identify Phase organization patterns • Analyze Agent invocation patterns MODE: analysis CONTEXT: {{skill_source}} EXPECTED: Structured design pattern analysis `, variables: ['skill_source'] }, input: ['collected-skills.md'], output: 'skill-patterns.json' };
// Execute const result = await executeLLMAction(llmConfig, { workDir: '.workflow/.scratchpad/skill-gen-xxx', skill_source: Read('.workflow/.scratchpad/skill-gen-xxx/collected-skills.md') }); ```
Scheduling LLM Actions in Orchestrator
```javascript // Schedule LLM actions in autonomous-orchestrator
const actions = [ { type: 'collect', priority: 100 }, { type: 'llm', id: 'llm-analyze', priority: 90 }, // LLM analysis { type: 'process', priority: 80 }, { type: 'llm', id: 'llm-generate', priority: 70 }, // LLM generation { type: 'validate', priority: 60 } ];
for (const action of sortByPriority(actions)) { if (action.type === 'llm') { const llmResult = await executeLLMAction( getLLMConfig(action.id), context ); context.state[action.id] = llmResult; } } ```
Error Handling
```javascript async function executeLLMActionWithRetry(config, context, maxRetries = 3) { let lastError = null;
for (let attempt = 1; attempt <= maxRetries; attempt++) { try { return await executeLLMAction(config, context); } catch (error) { lastError = error; console.log(`Attempt ${attempt} failed: ${error.message}`);
// Exponential backoff
if (attempt < maxRetries) {
await sleep(Math.pow(2, attempt) * 1000);
}
}
}
// All retries failed return { success: false, error: lastError.message, fallback: 'manual_review_required' }; } ```
Best Practices
-
Select Appropriate Tool
- Analysis tasks: Gemini (large context) > Qwen
- Generation tasks: Codex (autonomous execution) > Gemini > Qwen
- Code modification: Codex > Gemini
-
Configure Fallback Chain
- Always configure at least one fallback
- Consider tool characteristics when ordering fallbacks
-
Timeout Settings
- Analysis tasks: 10-15 minutes
- Generation tasks: 15-20 minutes
- Complex tasks: 20-60 minutes
-
Prompt Design
- Use PURPOSE/TASK/MODE/CONTEXT/EXPECTED/RULES structure
- Reference standard protocol templates
- Clearly specify output format requirements