Files
Claude-Code-Workflow/codex-lens/build/lib/codexlens/parsers/tokenizer.py

99 lines
2.6 KiB
Python

"""Token counting utilities for CodexLens.
Provides accurate token counting using tiktoken with character count fallback.
"""
from __future__ import annotations
from typing import Optional
try:
import tiktoken
TIKTOKEN_AVAILABLE = True
except ImportError:
TIKTOKEN_AVAILABLE = False
class Tokenizer:
"""Token counter with tiktoken primary and character count fallback."""
def __init__(self, encoding_name: str = "cl100k_base") -> None:
"""Initialize tokenizer.
Args:
encoding_name: Tiktoken encoding name (default: cl100k_base for GPT-4)
"""
self._encoding: Optional[object] = None
self._encoding_name = encoding_name
if TIKTOKEN_AVAILABLE:
try:
self._encoding = tiktoken.get_encoding(encoding_name)
except Exception:
# Fallback to character counting if encoding fails
self._encoding = None
def count_tokens(self, text: str) -> int:
"""Count tokens in text.
Uses tiktoken if available, otherwise falls back to character count / 4.
Args:
text: Text to count tokens for
Returns:
Estimated token count
"""
if not text:
return 0
if self._encoding is not None:
try:
return len(self._encoding.encode(text)) # type: ignore[attr-defined]
except Exception:
# Fall through to character count fallback
pass
# Fallback: rough estimate using character count
# Average of ~4 characters per token for English text
return max(1, len(text) // 4)
def is_using_tiktoken(self) -> bool:
"""Check if tiktoken is being used.
Returns:
True if tiktoken is available and initialized
"""
return self._encoding is not None
# Global default tokenizer instance
_default_tokenizer: Optional[Tokenizer] = None
def get_default_tokenizer() -> Tokenizer:
"""Get the global default tokenizer instance.
Returns:
Shared Tokenizer instance
"""
global _default_tokenizer
if _default_tokenizer is None:
_default_tokenizer = Tokenizer()
return _default_tokenizer
def count_tokens(text: str, tokenizer: Optional[Tokenizer] = None) -> int:
"""Count tokens in text using default or provided tokenizer.
Args:
text: Text to count tokens for
tokenizer: Optional tokenizer instance (uses default if None)
Returns:
Estimated token count
"""
if tokenizer is None:
tokenizer = get_default_tokenizer()
return tokenizer.count_tokens(text)