Files
Claude-Code-Workflow/codex-lens/build/lib/codexlens/semantic/reranker/fastembed_reranker.py

258 lines
8.2 KiB
Python

"""FastEmbed-based reranker backend.
This reranker uses fastembed's TextCrossEncoder for cross-encoder reranking.
FastEmbed is ONNX-based internally but provides a cleaner, unified API.
Install:
pip install fastembed>=0.4.0
"""
from __future__ import annotations
import logging
import threading
from typing import Any, Sequence
from .base import BaseReranker
logger = logging.getLogger(__name__)
def check_fastembed_reranker_available() -> tuple[bool, str | None]:
"""Check whether fastembed reranker dependencies are available."""
try:
import fastembed # noqa: F401
except ImportError as exc: # pragma: no cover - optional dependency
return (
False,
f"fastembed not available: {exc}. Install with: pip install fastembed>=0.4.0",
)
try:
from fastembed.rerank.cross_encoder import TextCrossEncoder # noqa: F401
except ImportError as exc: # pragma: no cover - optional dependency
return (
False,
f"fastembed TextCrossEncoder not available: {exc}. "
"Upgrade with: pip install fastembed>=0.4.0",
)
return True, None
class FastEmbedReranker(BaseReranker):
"""Cross-encoder reranker using fastembed's TextCrossEncoder with lazy loading."""
DEFAULT_MODEL = "Xenova/ms-marco-MiniLM-L-6-v2"
# Alternative models supported by fastembed:
# - "BAAI/bge-reranker-base"
# - "BAAI/bge-reranker-large"
# - "cross-encoder/ms-marco-MiniLM-L-6-v2"
def __init__(
self,
model_name: str | None = None,
*,
use_gpu: bool = True,
cache_dir: str | None = None,
threads: int | None = None,
) -> None:
"""Initialize FastEmbed reranker.
Args:
model_name: Model identifier. Defaults to Xenova/ms-marco-MiniLM-L-6-v2.
use_gpu: Whether to use GPU acceleration when available.
cache_dir: Optional directory for caching downloaded models.
threads: Optional number of threads for ONNX Runtime.
"""
self.model_name = (model_name or self.DEFAULT_MODEL).strip()
if not self.model_name:
raise ValueError("model_name cannot be blank")
self.use_gpu = bool(use_gpu)
self.cache_dir = cache_dir
self.threads = threads
self._encoder: Any | None = None
self._lock = threading.RLock()
def _load_model(self) -> None:
"""Lazy-load the TextCrossEncoder model."""
if self._encoder is not None:
return
ok, err = check_fastembed_reranker_available()
if not ok:
raise ImportError(err)
with self._lock:
if self._encoder is not None:
return
from fastembed.rerank.cross_encoder import TextCrossEncoder
# Determine providers based on GPU preference
providers: list[str] | None = None
if self.use_gpu:
try:
from ..gpu_support import get_optimal_providers
providers = get_optimal_providers(use_gpu=True, with_device_options=False)
except Exception:
# Fallback: let fastembed decide
providers = None
# Build initialization kwargs
init_kwargs: dict[str, Any] = {}
if self.cache_dir:
init_kwargs["cache_dir"] = self.cache_dir
if self.threads is not None:
init_kwargs["threads"] = self.threads
if providers:
init_kwargs["providers"] = providers
logger.debug(
"Loading FastEmbed reranker model: %s (use_gpu=%s)",
self.model_name,
self.use_gpu,
)
self._encoder = TextCrossEncoder(
model_name=self.model_name,
**init_kwargs,
)
logger.debug("FastEmbed reranker model loaded successfully")
@staticmethod
def _sigmoid(x: float) -> float:
"""Numerically stable sigmoid function."""
if x < -709:
return 0.0
if x > 709:
return 1.0
import math
return 1.0 / (1.0 + math.exp(-x))
def score_pairs(
self,
pairs: Sequence[tuple[str, str]],
*,
batch_size: int = 32,
) -> list[float]:
"""Score (query, doc) pairs.
Args:
pairs: Sequence of (query, doc) string pairs to score.
batch_size: Batch size for scoring.
Returns:
List of scores (one per pair), normalized to [0, 1] range.
"""
if not pairs:
return []
self._load_model()
if self._encoder is None: # pragma: no cover - defensive
return []
# FastEmbed's TextCrossEncoder.rerank() expects a query and list of documents.
# For batch scoring of multiple query-doc pairs, we need to process them.
# Group by query for efficiency when same query appears multiple times.
query_to_docs: dict[str, list[tuple[int, str]]] = {}
for idx, (query, doc) in enumerate(pairs):
if query not in query_to_docs:
query_to_docs[query] = []
query_to_docs[query].append((idx, doc))
# Score each query group
scores: list[float] = [0.0] * len(pairs)
for query, indexed_docs in query_to_docs.items():
docs = [doc for _, doc in indexed_docs]
indices = [idx for idx, _ in indexed_docs]
try:
# TextCrossEncoder.rerank returns raw float scores in same order as input
raw_scores = list(
self._encoder.rerank(
query=query,
documents=docs,
batch_size=batch_size,
)
)
# Map scores back to original positions and normalize with sigmoid
for i, raw_score in enumerate(raw_scores):
if i < len(indices):
original_idx = indices[i]
# Normalize score to [0, 1] using stable sigmoid
scores[original_idx] = self._sigmoid(float(raw_score))
except Exception as e:
logger.warning("FastEmbed rerank failed for query: %s", str(e)[:100])
# Leave scores as 0.0 for failed queries
return scores
def rerank(
self,
query: str,
documents: Sequence[str],
*,
top_k: int | None = None,
batch_size: int = 32,
) -> list[tuple[float, str, int]]:
"""Rerank documents for a single query.
This is a convenience method that provides results in ranked order.
Args:
query: The query string.
documents: List of documents to rerank.
top_k: Return only top K results. None returns all.
batch_size: Batch size for scoring.
Returns:
List of (score, document, original_index) tuples, sorted by score descending.
"""
if not documents:
return []
self._load_model()
if self._encoder is None: # pragma: no cover - defensive
return []
try:
# TextCrossEncoder.rerank returns raw float scores in same order as input
raw_scores = list(
self._encoder.rerank(
query=query,
documents=list(documents),
batch_size=batch_size,
)
)
# Convert to our format: (normalized_score, document, original_index)
ranked = []
for idx, raw_score in enumerate(raw_scores):
if idx < len(documents):
# Normalize score to [0, 1] using stable sigmoid
normalized = self._sigmoid(float(raw_score))
ranked.append((normalized, documents[idx], idx))
# Sort by score descending
ranked.sort(key=lambda x: x[0], reverse=True)
if top_k is not None and top_k > 0:
ranked = ranked[:top_k]
return ranked
except Exception as e:
logger.warning("FastEmbed rerank failed: %s", str(e)[:100])
return []