6.7 KiB
name, description, argument-hint, allowed-tools
| name | description | argument-hint | allowed-tools |
|---|---|---|---|
| load-skill-memory | Activate SKILL package (auto-detect or manual) and load documentation based on task intent | [skill_name] "task intent description" | Bash(*), Read(*), Skill(*) |
Memory Load SKILL Command (/memory:load-skill-memory)
1. Overview
The memory:load-skill-memory command activates SKILL package (auto-detect from task or manual specification) and intelligently loads documentation based on user's task intent. The system automatically determines which documentation files to read based on the intent description.
Core Philosophy:
- Flexible Activation: Auto-detect skill from task description/paths, or user explicitly specifies
- Intent-Driven Loading: System analyzes task intent to determine documentation scope
- Intelligent Selection: Automatically chooses appropriate documentation level and modules
- Direct Context Loading: Loads selected documentation into conversation memory
When to Use:
- Manually activate a known SKILL package for a specific task
- Load SKILL context when system hasn't auto-triggered it
- Force reload SKILL documentation with specific intent focus
Note: Normal SKILL activation happens automatically via description triggers or path mentions (system extracts skill name from file paths for intelligent triggering). Use this command only when manual activation is needed.
2. Parameters
-
[skill_name](Optional): Name of SKILL package to activate- If omitted: System auto-detects from task description or file paths
- If specified: Direct activation of named SKILL package
- Example:
my_project,api_service - Must match directory name under
.claude/skills/
-
"task intent description"(Required): Description of what you want to do- Used for both: auto-detection (if skill_name omitted) and documentation scope selection
- Analysis tasks: "分析builder pattern实现", "理解参数系统架构"
- Modification tasks: "修改workflow逻辑", "增强thermal template功能"
- Learning tasks: "学习接口设计模式", "了解测试框架使用"
- With paths: "修改D:\projects\my_project\src\auth.py的认证逻辑" (auto-extracts
my_project)
3. Execution Flow
Step 1: Determine SKILL Name (if not provided)
Auto-Detection Strategy (when skill_name parameter is omitted):
- Path Extraction: Scan task description for file paths
- Extract potential project names from path segments
- Example:
"修改D:\projects\my_project\src\auth.py"→ extractsmy_project
- Keyword Matching: Match task keywords against SKILL descriptions
- Search for project-specific terms, domain keywords
- Validation: Check if extracted name matches
.claude/skills/{skill_name}/
Result: Either uses provided skill_name or auto-detected name for activation
Step 2: Activate SKILL and Analyze Intent
Activate SKILL Package:
Skill(command: "${skill_name}") // Uses provided or auto-detected name
What Happens After Activation:
- If SKILL exists in memory: System reads
.claude/skills/${skill_name}/SKILL.md - If SKILL not found in memory: Error - SKILL package doesn't exist
- SKILL description triggers are loaded into memory
- Progressive loading mechanism becomes available
- Documentation structure is now accessible
Intent Analysis: Based on task intent description, system determines:
- Action type: analyzing, modifying, learning
- Scope: specific module, architecture overview, complete system
- Depth: quick reference, detailed API, full documentation
Step 3: Intelligent Documentation Loading
Loading Strategy:
The system automatically selects documentation based on intent keywords:
-
Quick Understanding ("了解", "快速理解", "什么是"):
- Load: Level 0 (README.md only, ~2K tokens)
- Use case: Quick overview of capabilities
-
Specific Module Analysis ("分析XXX模块", "理解XXX实现"):
- Load: Module-specific README.md + API.md (~5K tokens)
- Use case: Deep dive into specific component
-
Architecture Review ("架构", "设计模式", "整体结构"):
- Load: README.md + ARCHITECTURE.md (~10K tokens)
- Use case: System design understanding
-
Implementation/Modification ("修改", "增强", "实现"):
- Load: Relevant module docs + EXAMPLES.md (~15K tokens)
- Use case: Code modification with examples
-
Comprehensive Learning ("学习", "完整了解", "深入理解"):
- Load: Level 3 (All documentation, ~40K tokens)
- Use case: Complete system mastery
Documentation Loaded into Memory: After loading, the selected documentation content is available in conversation memory for subsequent operations.
4. Usage Examples
Example 1: Manual Specification
User Command:
/memory:load-skill-memory my_project "修改认证模块增加OAuth支持"
Execution:
// Step 1: Use provided skill_name
skill_name = "my_project" // Directly from parameter
// Step 2: Activate SKILL
Skill(command: "my_project")
// Step 3: Intent Analysis
Keywords: ["修改", "认证模块", "增加", "OAuth"]
Action: modifying (implementation)
Scope: auth module + examples
// Load documentation based on intent
Read(.workflow/docs/my_project/auth/README.md)
Read(.workflow/docs/my_project/auth/API.md)
Read(.workflow/docs/my_project/EXAMPLES.md)
Example 2: Auto-Detection from Path
User Command:
/memory:load-skill-memory "修改D:\projects\my_project\src\services\api.py的接口逻辑"
Execution:
// Step 1: Auto-detect skill_name from path
Path detected: "D:\projects\my_project\src\services\api.py"
Extracted: "my_project"
Validated: .claude/skills/my_project/ exists ✓
skill_name = "my_project"
// Step 2: Activate SKILL
Skill(command: "my_project")
// Step 3: Intent Analysis
Keywords: ["修改", "services", "接口逻辑"]
Action: modifying (implementation)
Scope: services module + examples
// Load documentation based on intent
Read(.workflow/docs/my_project/services/README.md)
Read(.workflow/docs/my_project/services/API.md)
Read(.workflow/docs/my_project/EXAMPLES.md)
5. Intent Keyword Mapping
Quick Reference:
- Triggers: "了解", "快速", "什么是", "简介"
- Loads: README.md only (~2K)
Module-Specific:
- Triggers: "XXX模块", "XXX组件", "分析XXX"
- Loads: Module README + API (~5K)
Architecture:
- Triggers: "架构", "设计", "整体结构", "系统设计"
- Loads: README + ARCHITECTURE (~10K)
Implementation:
- Triggers: "修改", "增强", "实现", "开发", "集成"
- Loads: Relevant module + EXAMPLES (~15K)
Comprehensive:
- Triggers: "完整", "深入", "全面", "学习整个"
- Loads: All documentation (~40K)