mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-05 01:50:27 +08:00
🚀 Revolutionary AI-powered development workflow orchestration system ## 🔥 Core Innovations - **Document-State Separation**: Markdown for planning, JSON for execution state - **Progressive Complexity Management**: Level 0-2 adaptive workflow depth - **5-Agent Orchestration**: Specialized AI agents with context preservation - **Session-First Architecture**: Auto-discovery and state inheritance ## 🏗️ Key Features - Intelligent workflow orchestration (Simple/Medium/Complex patterns) - Real-time document-state synchronization with conflict resolution - Hierarchical task management with 3-level JSON structure - Gemini CLI integration with 12+ specialized templates - Comprehensive file output generation for all workflow commands ## 📦 Installation Remote one-liner installation: ``` iex (iwr -useb https://raw.githubusercontent.com/catlog22/Claude-CCW/main/install-remote.ps1) ``` ## 🎯 System Architecture 4-layer intelligent development architecture: 1. Command Layer - Smart routing and version management 2. Agent Layer - 5 specialized development agents 3. Workflow Layer - Gemini templates and task orchestration 4. Memory Layer - Distributed documentation and auto-sync 🤖 Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
3.0 KiB
3.0 KiB
name, description
| name | description |
|---|---|
| python-dev | Python core development principles following PEP 8 and essential practices |
Python Development Guidelines
You are now operating under Python core development principles. Focus on essential PEP 8 practices without dictating project structure.
Core Language Principles
Naming Conventions (PEP 8)
- Variables/Functions: snake_case (
get_user_data,is_valid) - Constants: SCREAMING_SNAKE_CASE (
API_ENDPOINT,MAX_RETRIES) - Classes: PascalCase (
UserService,ApiClient) - Private: Single underscore prefix (
_private_method)
Essential Function Guidelines
- Type Hints: Use for parameters and return values when helpful
- Single Responsibility: Each function should do one thing well
- Explicit Error Handling: Create specific exception classes
- Context Managers: Use
withstatements for resource management
from typing import List, Optional
def calculate_total(items: List[dict]) -> float:
"""Calculate total price of items."""
if not items:
raise ValueError("Items list cannot be empty")
return sum(item.get('price', 0) for item in items)
# Core principle: Specific exceptions
class UserNotFoundError(Exception):
"""Raised when user cannot be found."""
pass
Essential Testing Practices
- Test Structure: Given-When-Then pattern
- Descriptive Names: Test names should describe behavior
- Mock External Dependencies: Isolate units under test
- Edge Cases: Test error conditions and boundary values
Code Quality Essentials
- PEP 8 Compliance: Follow standard Python style guide
- Type Checking: Use mypy or similar for type safety
- Automated Formatting: Use Black or similar formatter
- Import Organization: Keep imports organized and minimal
Security Core Principles
- Input Validation: Validate all external inputs
- Parameterized Queries: Never use string interpolation for SQL
- Environment Variables: Keep secrets out of code
- Dependency Management: Regularly audit packages for vulnerabilities
# Core principle: Safe database queries
from sqlalchemy import text
def get_user_by_email(email: str) -> Optional[User]:
query = text("SELECT * FROM users WHERE email = :email")
result = db.execute(query, {"email": email})
return result.fetchone()
Modern Python Features
- F-strings: Use for string formatting (
f"Hello {name}") - Pathlib: Use
pathlib.Pathinstead ofos.path - Dataclasses: Use for simple data containers
- List/Dict Comprehensions: Use appropriately for clarity
Performance Guidelines
- Avoid Premature Optimization: Write clear code first
- Use Built-in Functions: Leverage Python's built-in efficiency
- Generator Expressions: For memory efficiency with large datasets
- Context Managers: Ensure proper resource cleanup
Apply these core Python principles to ensure clean, maintainable, and Pythonic code without imposing specific frameworks or project structures.