mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-05 01:50:27 +08:00
- Updated references in various workflow commands to utilize role analysis documents instead of synthesis-specification.md. - Modified CLI templates and command references to reflect the new architecture and document structure. - Introduced conflict-resolution command to analyze and resolve conflicts between implementation plans and existing codebase. - Deprecated synthesis role template and provided migration guidance for transitioning to the new role analysis approach.
12 KiB
12 KiB
name, description, argument-hint, examples
| name | description | argument-hint | examples | |||
|---|---|---|---|---|---|---|
| gather | Intelligently collect project context using universal-executor agent based on task description and package into standardized JSON | --session WFS-session-id "task description" |
|
Context Gather Command (/workflow:tools:context-gather)
Overview
Agent-driven intelligent context collector that gathers relevant information from project codebase, documentation, and dependencies based on task descriptions, generating standardized context packages.
Core Philosophy
- Agent-Driven: Delegate execution to universal-executor agent for autonomous operation
- Two-Phase Flow: Discovery (context loading) → Execution (context gathering and packaging)
- Memory-First: Reuse loaded documents from conversation memory
- MCP-Enhanced: Use MCP tools for advanced code analysis and file discovery
- Intelligent Collection: Auto-identify relevant resources based on keyword analysis
- Comprehensive Coverage: Collect code, documentation, configurations, and dependencies
- Standardized Output: Generate unified format context-package.json
Execution Lifecycle
Phase 1: Discovery & Context Loading
⚡ Memory-First Rule: Skip file loading if documents already in conversation memory
Agent Context Package:
{
"session_id": "WFS-[session-id]",
"task_description": "[user provided task description]",
"session_metadata": {
// If in memory: use cached content
// Else: Load from .workflow/{session-id}/workflow-session.json
},
"mcp_capabilities": {
// Agent will use these tools to discover project context
"code_index": true,
"exa_code": true,
"exa_web": true
}
}
// Agent will autonomously execute:
// - Project structure analysis: bash(~/.claude/scripts/get_modules_by_depth.sh)
// - Documentation loading: Read(CLAUDE.md), Read(README.md)
Discovery Actions:
- Load Session Context (if not in memory)
if (!memory.has("workflow-session.json")) { Read(.workflow/{session-id}/workflow-session.json) }
Phase 2: Agent Execution (Context Gathering & Packaging)
Agent Invocation:
Task(
subagent_type="universal-executor",
description="Gather project context and generate context package",
prompt=`
## Execution Context
**Session ID**: WFS-{session-id}
**Task Description**: {task_description}
**Mode**: Agent-Driven Context Gathering
## Phase 1: Discovery Results (Provided Context)
### Session Metadata
{session_metadata_content}
### MCP Capabilities
- code-index: Available for file discovery and code search
- exa-code: Available for external research
- exa-web: Available for web search
## Phase 2: Context Gathering Task
### Core Responsibilities
1. **Project Structure Analysis**: Execute get_modules_by_depth.sh for architecture overview
2. **Documentation Loading**: Load CLAUDE.md, README.md and relevant documentation
3. **Keyword Extraction**: Extract core keywords from task description
4. **Smart File Discovery**: Use MCP code-index tools to locate relevant files
5. **Code Structure Analysis**: Analyze project structure to identify relevant modules
6. **Dependency Discovery**: Identify tech stack and dependency relationships
7. **Context Packaging**: Generate standardized JSON context package
### Execution Process
#### Step 0: Foundation Setup (Execute First)
1. **Project Structure Analysis**
Execute to get comprehensive architecture overview:
\`\`\`javascript
bash(~/.claude/scripts/get_modules_by_depth.sh)
\`\`\`
2. **Load Project Documentation** (if not in memory)
Load core project documentation:
\`\`\`javascript
Read(CLAUDE.md)
Read(README.md)
// Load other relevant documentation based on session context
\`\`\`
#### Step 1: Task Analysis
1. **Keyword Extraction**
- Parse task description to extract core keywords
- Identify technical domain (auth, API, frontend, backend, etc.)
- Determine complexity level (simple, medium, complex)
2. **Scope Determination**
- Define collection scope based on keywords
- Identify potentially involved modules and components
- Set file type filters
#### Step 2: MCP-Enhanced File Discovery
1. **Code File Location**
Use MCP code-index tools:
\`\`\`javascript
// Find files by pattern
mcp__code-index__find_files(pattern="*{keyword}*")
// Search code content
mcp__code-index__search_code_advanced(
pattern="{keyword_patterns}",
file_pattern="*.{ts,js,py,go,md}",
context_lines=3
)
// Get file summaries
mcp__code-index__get_file_summary(file_path="relevant/file.ts")
\`\`\`
2. **Configuration Files Discovery**
Locate: package.json, requirements.txt, Cargo.toml, tsconfig.json, etc.
3. **Test Files Location**
Find test files related to task keywords
#### Step 3: Intelligent Filtering & Association
1. **Relevance Scoring**
- Score based on keyword match degree
- Score based on file path relevance
- Score based on code content relevance
2. **Dependency Analysis**
- Analyze import/require statements
- Identify inter-module dependencies
- Determine core and optional dependencies
#### Step 4: Context Packaging
Generate standardized context-package.json following the format below
#### Step 5: Conflict Detection & Risk Assessment
**Purpose**: Analyze existing codebase to determine conflict risk level
1. **Existing Code Detection**
- Count relevant existing source files discovered in Step 2
- Identify modules that overlap with task scope
- Flag existence of implementations related to task keywords
2. **Architecture Analysis**
- Compare task requirements with existing architecture patterns
- Identify potential architectural changes required
- Detect breaking changes to current structure
3. **API & Dependency Analysis**
- Check for existing API endpoints/contracts that may change
- Identify shared dependencies and interface changes
- Detect potential breaking changes to public APIs
4. **Data Model Analysis**
- Identify existing data models/schemas in task scope
- Check for schema modification requirements
- Detect potential data migration needs
5. **Risk Level Calculation**
Calculate conflict_risk based on:
- **none**: No existing code, new feature/module
- **low**: < 5 existing files, minimal changes
- **medium**: 5-15 existing files OR architectural changes OR API changes
- **high**: >15 existing files OR data model changes OR breaking changes
### Required Output
**Output Location**: \`.workflow/{session-id}/.process/context-package.json\`
**Output Format**:
\`\`\`json
{
"metadata": {
"task_description": "Implement user authentication system",
"timestamp": "2025-09-29T10:30:00Z",
"keywords": ["user", "authentication", "JWT", "login"],
"complexity": "medium",
"tech_stack": ["typescript", "node.js", "express"],
"session_id": "WFS-user-auth"
},
"assets": [
{
"type": "documentation",
"path": "CLAUDE.md",
"relevance": "Project development standards and conventions",
"priority": "high"
},
{
"type": "documentation",
"path": ".workflow/docs/architecture/security.md",
"relevance": "Security architecture design guidance",
"priority": "high"
},
{
"type": "source_code",
"path": "src/auth/AuthService.ts",
"relevance": "Existing authentication service implementation",
"priority": "high"
},
{
"type": "source_code",
"path": "src/models/User.ts",
"relevance": "User data model definition",
"priority": "medium"
},
{
"type": "config",
"path": "package.json",
"relevance": "Project dependencies and tech stack",
"priority": "medium"
},
{
"type": "test",
"path": "tests/auth/*.test.ts",
"relevance": "Authentication related test cases",
"priority": "medium"
}
],
"tech_stack": {
"frameworks": ["express", "typescript"],
"libraries": ["jsonwebtoken", "bcrypt"],
"testing": ["jest", "supertest"]
},
"statistics": {
"total_files": 15,
"source_files": 8,
"docs_files": 4,
"config_files": 2,
"test_files": 1
},
"conflict_detection": {
"conflict_risk": "medium",
"existing_files": [
"src/auth/AuthService.ts",
"src/models/User.ts",
"src/middleware/auth.ts"
],
"has_existing_code": true,
"affected_modules": ["auth", "user-model"],
"detection_criteria": {
"existing_code_count": 8,
"architecture_changes": false,
"api_changes": true,
"data_model_changes": false
},
"risk_rationale": "Medium risk due to existing auth code and potential API changes"
}
}
\`\`\`
### Quality Validation
Before completion, verify:
- [ ] context-package.json created in correct location
- [ ] Valid JSON format with all required fields
- [ ] Metadata includes task description, keywords, complexity
- [ ] Assets array contains relevant files with priorities
- [ ] Tech stack accurately identified
- [ ] Statistics section provides file counts
- [ ] File relevance accuracy >80%
- [ ] No sensitive information exposed
### Performance Optimization
**Large Project Optimization**:
- File count limit: Maximum 50 files per type
- Size filtering: Skip oversized files (>10MB)
- Depth limit: Maximum search depth of 3 levels
- Use MCP tools for efficient discovery
**MCP Tools Integration**:
Agent should use MCP code-index tools when available:
\`\`\`javascript
// Set project path
mcp__code-index__set_project_path(path="{current_project_path}")
// Refresh index
mcp__code-index__refresh_index()
// Find files by pattern
mcp__code-index__find_files(pattern="*{keyword}*")
// Search code content
mcp__code-index__search_code_advanced(
pattern="{keyword_patterns}",
file_pattern="*.{ts,js,py,go,md}",
context_lines=3
)
\`\`\`
**Fallback Strategy**:
When MCP tools unavailable, agent should use traditional commands:
- \`find\` for file discovery
- \`rg\` or \`grep\` for content search
- Bash commands from project structure analysis
## Output
Generate context-package.json and report completion:
- Task description: {description}
- Keywords extracted: {count}
- Files collected: {total}
- Source files: {count}
- Documentation: {count}
- Configuration: {count}
- Tests: {count}
- Tech stack identified: {frameworks/libraries}
- Output location: .workflow/{session-id}/.process/context-package.json
\`
)
\`\`\`
## Command Integration
### Usage
```bash
# Basic usage
/workflow:tools:context-gather --session WFS-auth "Implement JWT authentication"
# Called by /workflow:plan
SlashCommand(command="/workflow:tools:context-gather --session WFS-[id] \\"[task description]\\"")
Agent Context Passing
Memory-Aware Context Assembly:
// Assemble minimal context package for agent
// Agent will execute project structure analysis and documentation loading
const agentContext = {
session_id: "WFS-[id]",
task_description: "[user provided task description]",
// Use memory if available, else load
session_metadata: memory.has("workflow-session.json")
? memory.get("workflow-session.json")
: Read(.workflow/WFS-[id]/workflow-session.json),
// MCP capabilities - agent will use these tools
mcp_capabilities: {
code_index: true,
exa_code: true,
exa_web: true
}
}
// Note: Agent will execute these steps autonomously:
// - bash(~/.claude/scripts/get_modules_by_depth.sh) for project structure
// - Read(CLAUDE.md) and Read(README.md) for documentation
Session ID Integration
Session ID Usage
- Required Parameter:
--session WFS-session-id - Session Context Loading: Load existing session state and metadata
- Session Continuity: Maintain context across workflow pipeline phases
Session Validation
// Validate session exists
const sessionPath = `.workflow/${session_id}`;
if (!fs.existsSync(sessionPath)) {
console.error(`❌ Session ${session_id} not found`);
process.exit(1);
}
Success Criteria
- Valid context-package.json generated in correct location
- Contains sufficient relevant information (>80% relevance)
- Execution completes within reasonable time (<2 minutes)
- All required fields present and properly formatted
- Agent reports completion status with statistics