31 KiB
name, description, argument-hint, allowed-tools
| name | description | argument-hint | allowed-tools |
|---|---|---|---|
| review-cycle-fix | Automated fixing of code review findings with AI-powered planning and coordinated execution. Uses intelligent grouping, multi-stage timeline coordination, and test-driven verification. | <export-file|review-dir> [--resume] [--max-iterations=N] [--batch-size=N] | Skill(*), TodoWrite(*), Read(*), Bash(*), Task(*), Edit(*), Write(*) |
Workflow Review-Cycle-Fix Command
Quick Start
# Fix from exported findings file (session-based path)
/workflow:review-cycle-fix .workflow/active/WFS-123/.review/fix-export-1706184622000.json
# Fix from review directory (auto-discovers latest export)
/workflow:review-cycle-fix .workflow/active/WFS-123/.review/
# Resume interrupted fix session
/workflow:review-cycle-fix --resume
# Custom max retry attempts per finding
/workflow:review-cycle-fix .workflow/active/WFS-123/.review/ --max-iterations=5
# Custom batch size for parallel planning (default: 5 findings per batch)
/workflow:review-cycle-fix .workflow/active/WFS-123/.review/ --batch-size=3
Fix Source: Exported findings from review cycle dashboard
Output Directory: {review-dir}/fixes/{fix-session-id}/ (within session .review/)
Default Max Iterations: 3 (per finding, adjustable)
Default Batch Size: 5 (findings per planning batch, adjustable)
Max Parallel Agents: 10 (concurrent planning agents)
CLI Tools: @cli-planning-agent (planning), @cli-execute-agent (fixing)
What & Why
Core Concept
Automated fix orchestrator with parallel planning architecture: Multiple AI agents analyze findings concurrently in batches, then coordinate parallel/serial execution. Generates fix timeline with intelligent grouping and dependency analysis, executes fixes with conservative test verification.
Fix Process:
- Batching Phase (1.5): Orchestrator groups findings by file+dimension similarity, creates batches
- Planning Phase (2): Up to 10 agents plan batches in parallel, generate partial plans, orchestrator aggregates
- Execution Phase (3): Main orchestrator coordinates agents per aggregated timeline stages
- Parallel Efficiency: Customizable batch size (default: 5), MAX_PARALLEL=10 agents
- No rigid structure: Adapts to task requirements, not bound to fixed JSON format
vs Manual Fixing:
- Manual: Developer reviews findings one-by-one, fixes sequentially
- Automated: AI groups related issues, multiple agents plan in parallel, executes in optimal parallel/serial order with automatic test verification
Value Proposition
- Parallel Planning: Multiple agents analyze findings concurrently, reducing planning time for large batches (10+ findings)
- Intelligent Batching: Semantic similarity grouping ensures related findings are analyzed together
- Multi-stage Coordination: Supports complex parallel + serial execution with cross-batch dependency management
- Conservative Safety: Mandatory test verification with automatic rollback on failure
- Resume Support: Checkpoint-based recovery for interrupted sessions
Orchestrator Boundary (CRITICAL)
- ONLY command for automated review finding fixes
- Manages: Intelligent batching (Phase 1.5), parallel planning coordination (launch N agents), plan aggregation, stage-based execution, agent scheduling, progress tracking
- Delegates: Batch planning to @cli-planning-agent, fix execution to @cli-execute-agent
Execution Flow
Phase 1: Discovery & Initialization
└─ Validate export file, create fix session structure, initialize state files
Phase 1.5: Intelligent Grouping & Batching
├─ Analyze findings metadata (file, dimension, severity)
├─ Group by semantic similarity (file proximity + dimension affinity)
├─ Create batches respecting --batch-size (default: 5)
└─ Output: Finding batches for parallel planning
Phase 2: Parallel Planning Coordination (@cli-planning-agent × N)
├─ Launch MAX_PARALLEL planning agents concurrently (default: 10)
├─ Each agent processes one batch:
│ ├─ Analyze findings for patterns and dependencies
│ ├─ Group by file + dimension + root cause similarity
│ ├─ Determine execution strategy (parallel/serial/hybrid)
│ ├─ Generate fix timeline with stages
│ └─ Output: partial-plan-{batch-id}.json
├─ Collect results from all agents
└─ Aggregate: Merge partial plans → fix-plan.json (resolve cross-batch dependencies)
Phase 3: Execution Orchestration (Stage-based)
For each timeline stage:
├─ Load groups for this stage
├─ If parallel: Launch all group agents simultaneously
├─ If serial: Execute groups sequentially
├─ Each agent:
│ ├─ Analyze code context
│ ├─ Apply fix per strategy
│ ├─ Run affected tests
│ ├─ On test failure: Rollback, retry up to max_iterations
│ └─ On success: Commit, update fix-progress-{N}.json
└─ Advance to next stage
Phase 4: Completion & Aggregation
└─ Aggregate results → Generate fix-summary.md → Update history → Output summary
Phase 5: Session Completion (Optional)
└─ If all fixes successful → Prompt to complete workflow session
Agent Roles
| Agent | Responsibility |
|---|---|
| Orchestrator | Input validation, session management, intelligent batching (Phase 1.5), parallel planning coordination (launch N agents), plan aggregation (merge partial plans, resolve cross-batch dependencies), stage-based execution scheduling, progress tracking, result aggregation |
| @cli-planning-agent | Batch findings analysis, intelligent grouping (file+dimension+root cause), execution strategy determination (parallel/serial/hybrid), timeline generation with dependency mapping, partial plan output |
| @cli-execute-agent | Fix execution per group, code context analysis, Edit tool operations, test verification, git rollback on failure, completion JSON generation |
Enhanced Features
1. Parallel Planning Architecture
Batch Processing Strategy:
| Phase | Agent Count | Input | Output | Purpose |
|---|---|---|---|---|
| Batching (1.5) | Orchestrator | All findings | Finding batches | Semantic grouping by file+dimension, respecting --batch-size |
| Planning (2) | N agents (≤10) | 1 batch each | partial-plan-{batch-id}.json | Analyze batch in parallel, generate execution groups and timeline |
| Aggregation (2) | Orchestrator | All partial plans | fix-plan.json | Merge timelines, resolve cross-batch dependencies |
| Execution (3) | M agents (dynamic) | 1 group each | fix-progress-{N}.json | Execute fixes per aggregated plan with test verification |
Benefits:
- Speed: N agents plan concurrently, reducing planning time for large batches
- Scalability: MAX_PARALLEL=10 prevents resource exhaustion
- Flexibility: Batch size customizable via --batch-size (default: 5)
- Isolation: Each planning agent focuses on related findings (semantic grouping)
- Reusable: Aggregated plan can be re-executed without re-planning
2. Intelligent Grouping Strategy
Three-Level Grouping:
// Level 1: Primary grouping by file + dimension
{file: "auth.ts", dimension: "security"} → Group A
{file: "auth.ts", dimension: "quality"} → Group B
{file: "query-builder.ts", dimension: "security"} → Group C
// Level 2: Secondary grouping by root cause similarity
Group A findings → Semantic similarity analysis (threshold 0.7)
→ Sub-group A1: "missing-input-validation" (findings 1, 2)
→ Sub-group A2: "insecure-crypto" (finding 3)
// Level 3: Dependency analysis
Sub-group A1 creates validation utilities
Sub-group C4 depends on those utilities
→ A1 must execute before C4 (serial stage dependency)
Similarity Computation:
- Combine:
description + recommendation + category - Vectorize: TF-IDF or LLM embedding
- Cluster: Greedy algorithm with cosine similarity > 0.7
3. Execution Strategy Determination
Strategy Types:
| Strategy | When to Use | Stage Structure |
|---|---|---|
| Parallel | All groups independent, different files | Single stage, all groups in parallel |
| Serial | Strong dependencies, shared resources | Multiple stages, one group per stage |
| Hybrid | Mixed dependencies | Multiple stages, parallel within stages |
Dependency Detection:
- Shared file modifications
- Utility creation + usage patterns
- Test dependency chains
- Risk level clustering (high-risk groups isolated)
4. Conservative Test Verification
Test Strategy (per fix):
// 1. Identify affected tests
const testPattern = identifyTestPattern(finding.file);
// e.g., "tests/auth/**/*.test.*" for src/auth/service.ts
// 2. Run tests
const result = await runTests(testPattern);
// 3. Evaluate
if (result.passRate < 100%) {
// Rollback
await gitCheckout(finding.file);
// Retry with failure context
if (attempts < maxIterations) {
const fixContext = analyzeFailure(result.stderr);
regenerateFix(finding, fixContext);
retry();
} else {
markFailed(finding.id);
}
} else {
// Commit
await gitCommit(`Fix: ${finding.title} [${finding.id}]`);
markFixed(finding.id);
}
Pass Criteria: 100% test pass rate (no partial fixes)
Core Responsibilities
Orchestrator
Phase 1: Discovery & Initialization
- Input validation: Check export file exists and is valid JSON
- Auto-discovery: If review-dir provided, find latest
*-fix-export.json - Session creation: Generate fix-session-id (
fix-{timestamp}) - Directory structure: Create
{review-dir}/fixes/{fix-session-id}/with subdirectories - State files: Initialize active-fix-session.json (session marker)
- TodoWrite initialization: Set up 5-phase tracking (including Phase 1.5)
Phase 1.5: Intelligent Grouping & Batching
- Load all findings metadata (id, file, dimension, severity, title)
- Semantic similarity analysis:
- Primary: Group by file proximity (same file or related modules)
- Secondary: Group by dimension affinity (same review dimension)
- Tertiary: Analyze title/description similarity (root cause clustering)
- Create batches respecting --batch-size (default: 5 findings per batch)
- Balance workload: Distribute high-severity findings across batches
- Output: Array of finding batches for parallel planning
Phase 2: Parallel Planning Coordination
- Determine concurrency: MIN(batch_count, MAX_PARALLEL=10)
- For each batch chunk (≤10 batches):
- Launch all agents in parallel with run_in_background=true
- Pass batch findings + project context + batch_id to each agent
- Each agent outputs: partial-plan-{batch-id}.json
- Collect results via TaskOutput (blocking until all complete)
- Aggregate partial plans:
- Merge execution groups (renumber group_ids sequentially: G1, G2, ...)
- Merge timelines (detect cross-batch dependencies, adjust stages)
- Resolve conflicts (same file in multiple batches → serialize)
- Generate final fix-plan.json with aggregated metadata
- TodoWrite update: Mark planning complete, start execution
Phase 3: Execution Orchestration
- Load fix-plan.json timeline stages
- For each stage:
- If parallel mode: Launch all group agents via
Promise.all() - If serial mode: Execute groups sequentially with
await - Assign agent IDs (agents update their fix-progress-{N}.json)
- If parallel mode: Launch all group agents via
- Handle agent failures gracefully (mark group as failed, continue)
- Advance to next stage only when current stage complete
Phase 4: Completion & Aggregation
- Collect final status from all fix-progress-{N}.json files
- Generate fix-summary.md with timeline and results
- Update fix-history.json with new session entry
- Remove active-fix-session.json
- TodoWrite completion: Mark all phases done
- Output summary to user
Phase 5: Session Completion (Optional)
- If all findings fixed successfully (no failures):
- Prompt user: "All fixes complete. Complete workflow session? [Y/n]"
- If confirmed: Execute
/workflow:session:completeto archive session with lessons learned
- If partial success (some failures):
- Output: "Some findings failed. Review fix-summary.md before completing session."
- Do NOT auto-complete session
Output File Structure
.workflow/active/WFS-{session-id}/.review/
├── fix-export-{timestamp}.json # Exported findings (input)
└── fixes/{fix-session-id}/
├── partial-plan-1.json # Batch 1 partial plan (planning agent 1 output)
├── partial-plan-2.json # Batch 2 partial plan (planning agent 2 output)
├── partial-plan-N.json # Batch N partial plan (planning agent N output)
├── fix-plan.json # Aggregated execution plan (orchestrator merges partials)
├── fix-progress-1.json # Group 1 progress (planning agent init → agent updates)
├── fix-progress-2.json # Group 2 progress (planning agent init → agent updates)
├── fix-progress-3.json # Group 3 progress (planning agent init → agent updates)
├── fix-summary.md # Final report (orchestrator generates)
├── active-fix-session.json # Active session marker
└── fix-history.json # All sessions history
File Producers:
- Orchestrator: Batches findings (Phase 1.5), aggregates partial plans →
fix-plan.json(Phase 2), launches parallel planning agents - Planning Agents (N): Each outputs
partial-plan-{batch-id}.json+ initializesfix-progress-*.jsonfor assigned groups - Execution Agents (M): Update assigned
fix-progress-{N}.jsonin real-time
Agent Invocation Template
Phase 1.5: Intelligent Batching (Orchestrator):
// Load findings
const findings = JSON.parse(Read(exportFile));
const batchSize = flags.batchSize || 5;
// Semantic similarity analysis: group by file+dimension
const batches = [];
const grouped = new Map(); // key: "${file}:${dimension}"
for (const finding of findings) {
const key = `${finding.file || 'unknown'}:${finding.dimension || 'general'}`;
if (!grouped.has(key)) grouped.set(key, []);
grouped.get(key).push(finding);
}
// Create batches respecting batchSize
for (const [key, group] of grouped) {
while (group.length > 0) {
const batch = group.splice(0, batchSize);
batches.push({
batch_id: batches.length + 1,
findings: batch,
metadata: { primary_file: batch[0].file, primary_dimension: batch[0].dimension }
});
}
}
console.log(`Created ${batches.length} batches (${batchSize} findings per batch)`);
Phase 2: Parallel Planning (Orchestrator launches N agents):
const MAX_PARALLEL = 10;
const partialPlans = [];
// Process batches in chunks of MAX_PARALLEL
for (let i = 0; i < batches.length; i += MAX_PARALLEL) {
const chunk = batches.slice(i, i + MAX_PARALLEL);
const taskIds = [];
// Launch agents in parallel (run_in_background=true)
for (const batch of chunk) {
const taskId = Task({
subagent_type: "cli-planning-agent",
run_in_background: true,
description: `Plan batch ${batch.batch_id}: ${batch.findings.length} findings`,
prompt: planningPrompt(batch) // See Planning Agent template below
});
taskIds.push({ taskId, batch });
}
console.log(`Launched ${taskIds.length} planning agents...`);
// Collect results from this chunk (blocking)
for (const { taskId, batch } of taskIds) {
const result = TaskOutput({ task_id: taskId, block: true });
const partialPlan = JSON.parse(Read(`${sessionDir}/partial-plan-${batch.batch_id}.json`));
partialPlans.push(partialPlan);
updateTodo(`Batch ${batch.batch_id}`, 'completed');
}
}
// Aggregate partial plans → fix-plan.json
let groupCounter = 1;
const groupIdMap = new Map();
for (const partial of partialPlans) {
for (const group of partial.groups) {
const newGroupId = `G${groupCounter}`;
groupIdMap.set(`${partial.batch_id}:${group.group_id}`, newGroupId);
aggregatedPlan.groups.push({ ...group, group_id: newGroupId, progress_file: `fix-progress-${groupCounter}.json` });
groupCounter++;
}
}
// Merge timelines, resolve cross-batch conflicts (shared files → serialize)
let stageCounter = 1;
for (const partial of partialPlans) {
for (const stage of partial.timeline) {
aggregatedPlan.timeline.push({
...stage, stage_id: stageCounter,
groups: stage.groups.map(gid => groupIdMap.get(`${partial.batch_id}:${gid}`))
});
stageCounter++;
}
}
// Write aggregated plan + initialize progress files
Write(`${sessionDir}/fix-plan.json`, JSON.stringify(aggregatedPlan, null, 2));
for (let i = 1; i <= aggregatedPlan.groups.length; i++) {
Write(`${sessionDir}/fix-progress-${i}.json`, JSON.stringify(initProgressFile(aggregatedPlan.groups[i-1]), null, 2));
}
Planning Agent (Batch Mode - Partial Plan Only):
Task({
subagent_type: "cli-planning-agent",
run_in_background: true,
description: `Plan batch ${batch.batch_id}: ${batch.findings.length} findings`,
prompt: `
## Task Objective
Analyze code review findings in batch ${batch.batch_id} and generate **partial** execution plan.
## Input Data
Review Session: ${reviewId}
Fix Session ID: ${fixSessionId}
Batch ID: ${batch.batch_id}
Batch Findings: ${batch.findings.length}
Findings:
${JSON.stringify(batch.findings, null, 2)}
Project Context:
- Structure: ${projectStructure}
- Test Framework: ${testFramework}
- Git Status: ${gitStatus}
## Output Requirements
### 1. partial-plan-${batch.batch_id}.json
Generate partial execution plan with structure:
{
"batch_id": ${batch.batch_id},
"groups": [...], // Groups created from batch findings (use local IDs: G1, G2, ...)
"timeline": [...], // Local timeline for this batch only
"metadata": {
"findings_count": ${batch.findings.length},
"groups_count": N,
"created_at": "ISO-8601-timestamp"
}
}
**Key Generation Rules**:
- **Groups**: Create groups with local IDs (G1, G2, ...) using intelligent grouping (file+dimension+root cause)
- **Timeline**: Define stages for this batch only (local dependencies within batch)
- **Progress Files**: DO NOT generate fix-progress-*.json here (orchestrator handles after aggregation)
## Analysis Requirements
### Intelligent Grouping Strategy
Group findings using these criteria (in priority order):
1. **File Proximity**: Findings in same file or related files
2. **Dimension Affinity**: Same dimension (security, performance, etc.)
3. **Root Cause Similarity**: Similar underlying issues
4. **Fix Approach Commonality**: Can be fixed with similar approach
**Grouping Guidelines**:
- Optimal group size: 2-5 findings per group
- Avoid cross-cutting concerns in same group
- Consider test isolation (different test suites → different groups)
- Balance workload across groups for parallel execution
### Execution Strategy Determination (Local Only)
**Parallel Mode**: Use when groups are independent, no shared files
**Serial Mode**: Use when groups have dependencies or shared resources
**Hybrid Mode**: Use for mixed dependency graphs (recommended for most cases)
**Dependency Analysis**:
- Identify shared files between groups
- Detect test dependency chains
- Evaluate risk of concurrent modifications
### Risk Assessment
For each group, evaluate:
- **Complexity**: Based on code structure, file size, existing tests
- **Impact Scope**: Number of files affected, API surface changes
- **Rollback Feasibility**: Ease of reverting changes if tests fail
### Test Strategy
For each group, determine:
- **Test Pattern**: Glob pattern matching affected tests
- **Pass Criteria**: All tests must pass (100% pass rate)
- **Test Command**: Infer from project (package.json, pytest.ini, etc.)
## Output Files
Write to ${sessionDir}:
- ./partial-plan-${batch.batch_id}.json
## Quality Checklist
Before finalizing outputs:
- ✅ All batch findings assigned to exactly one group
- ✅ Group dependencies (within batch) correctly identified
- ✅ Timeline stages respect local dependencies
- ✅ Test patterns are valid and specific
- ✅ Risk assessments are realistic
`
})
Execution Agent (per group):
Task({
subagent_type: "cli-execute-agent",
description: `Fix ${group.findings.length} issues: ${group.group_name}`,
prompt: `
## Task Objective
Execute fixes for code review findings in group ${group.group_id}. Update progress file in real-time with flow control tracking.
## Assignment
- Group ID: ${group.group_id}
- Group Name: ${group.group_name}
- Progress File: ${sessionDir}/${group.progress_file}
- Findings Count: ${group.findings.length}
- Max Iterations: ${maxIterations} (per finding)
## Fix Strategy
${JSON.stringify(group.fix_strategy, null, 2)}
## Risk Assessment
${JSON.stringify(group.risk_assessment, null, 2)}
## Execution Flow
### Initialization (Before Starting)
1. Read ${group.progress_file} to load initial state
2. Update progress file:
- assigned_agent: "${agentId}"
- status: "in-progress"
- started_at: Current ISO 8601 timestamp
- last_update: Current ISO 8601 timestamp
3. Write updated state back to ${group.progress_file}
### Main Execution Loop
For EACH finding in ${group.progress_file}.findings:
#### Step 1: Analyze Context
**Before Step**:
- Update finding: status→"in-progress", started_at→now()
- Update current_finding: Populate with finding details, status→"analyzing", action→"Reading file and understanding code structure"
- Update phase→"analyzing"
- Update flow_control: Add "analyze_context" step to implementation_approach (status→"in-progress"), set current_step→"analyze_context"
- Update last_update→now(), write to ${group.progress_file}
**Action**:
- Read file: finding.file
- Understand code structure around line: finding.line
- Analyze surrounding context (imports, dependencies, related functions)
- Review recommendations: finding.recommendations
**After Step**:
- Update flow_control: Mark "analyze_context" step as "completed" with completed_at→now()
- Update last_update→now(), write to ${group.progress_file}
#### Step 2: Apply Fix
**Before Step**:
- Update current_finding: status→"fixing", action→"Applying code changes per recommendations"
- Update phase→"fixing"
- Update flow_control: Add "apply_fix" step to implementation_approach (status→"in-progress"), set current_step→"apply_fix"
- Update last_update→now(), write to ${group.progress_file}
**Action**:
- Use Edit tool to implement code changes per finding.recommendations
- Follow fix_strategy.approach
- Maintain code style and existing patterns
**After Step**:
- Update flow_control: Mark "apply_fix" step as "completed" with completed_at→now()
- Update last_update→now(), write to ${group.progress_file}
#### Step 3: Test Verification
**Before Step**:
- Update current_finding: status→"testing", action→"Running test suite to verify fix"
- Update phase→"testing"
- Update flow_control: Add "run_tests" step to implementation_approach (status→"in-progress"), set current_step→"run_tests"
- Update last_update→now(), write to ${group.progress_file}
**Action**:
- Run tests using fix_strategy.test_pattern
- Require 100% pass rate
- Capture test output
**On Test Failure**:
- Git rollback: \`git checkout -- \${finding.file}\`
- Increment finding.attempts
- Update flow_control: Mark "run_tests" step as "failed" with completed_at→now()
- Update errors: Add entry (finding_id, error_type→"test_failure", message, timestamp)
- If finding.attempts < ${maxIterations}:
- Reset flow_control: implementation_approach→[], current_step→null
- Retry from Step 1
- Else:
- Update finding: status→"completed", result→"failed", error_message→"Max iterations reached", completed_at→now()
- Update summary counts, move to next finding
**On Test Success**:
- Update flow_control: Mark "run_tests" step as "completed" with completed_at→now()
- Update last_update→now(), write to ${group.progress_file}
- Proceed to Step 4
#### Step 4: Commit Changes
**Before Step**:
- Update current_finding: status→"committing", action→"Creating git commit for successful fix"
- Update phase→"committing"
- Update flow_control: Add "commit_changes" step to implementation_approach (status→"in-progress"), set current_step→"commit_changes"
- Update last_update→now(), write to ${group.progress_file}
**Action**:
- Git commit: \`git commit -m "fix(${finding.dimension}): ${finding.title} [${finding.id}]"\`
- Capture commit hash
**After Step**:
- Update finding: status→"completed", result→"fixed", commit_hash→<captured>, test_passed→true, completed_at→now()
- Update flow_control: Mark "commit_changes" step as "completed" with completed_at→now()
- Update last_update→now(), write to ${group.progress_file}
#### After Each Finding
- Update summary: Recalculate counts (pending/in_progress/fixed/failed) and percent_complete
- If all findings completed: Clear current_finding, reset flow_control
- Update last_update→now(), write to ${group.progress_file}
### Final Completion
When all findings processed:
- Update status→"completed", phase→"done", summary.percent_complete→100.0
- Update last_update→now(), write final state to ${group.progress_file}
## Critical Requirements
### Progress File Updates
- **MUST update after every significant action** (before/after each step)
- **Always maintain complete structure** - never write partial updates
- **Use ISO 8601 timestamps** - e.g., "2025-01-25T14:36:00Z"
### Flow Control Format
Follow action-planning-agent flow_control.implementation_approach format:
- step: Identifier (e.g., "analyze_context", "apply_fix")
- action: Human-readable description
- status: "pending" | "in-progress" | "completed" | "failed"
- started_at: ISO 8601 timestamp or null
- completed_at: ISO 8601 timestamp or null
### Error Handling
- Capture all errors in errors[] array
- Never leave progress file in invalid state
- Always write complete updates, never partial
- On unrecoverable error: Mark group as failed, preserve state
## Test Patterns
Use fix_strategy.test_pattern to run affected tests:
- Pattern: ${group.fix_strategy.test_pattern}
- Command: Infer from project (npm test, pytest, etc.)
- Pass Criteria: 100% pass rate required
`
})
Error Handling
Batching Failures (Phase 1.5):
- Invalid findings data → Abort with error message
- Empty batches after grouping → Warn and skip empty batches
Planning Failures (Phase 2):
- Planning agent timeout → Mark batch as failed, continue with other batches
- Partial plan missing → Skip batch, warn user
- Agent crash → Collect available partial plans, proceed with aggregation
- All agents fail → Abort entire fix session with error
- Aggregation conflicts → Apply conflict resolution (serialize conflicting groups)
Execution Failures (Phase 3):
- Agent crash → Mark group as failed, continue with other groups
- Test command not found → Skip test verification, warn user
- Git operations fail → Abort with error, preserve state
Rollback Scenarios:
- Test failure after fix → Automatic
git checkoutrollback - Max iterations reached → Leave file unchanged, mark as failed
- Unrecoverable error → Rollback entire group, save checkpoint
TodoWrite Structure
Initialization (after Phase 1.5 batching):
TodoWrite({
todos: [
{content: "Phase 1: Discovery & Initialization", status: "completed", activeForm: "Discovering"},
{content: "Phase 1.5: Intelligent Batching", status: "completed", activeForm: "Batching"},
{content: "Phase 2: Parallel Planning", status: "in_progress", activeForm: "Planning"},
{content: " → Batch 1: 4 findings (auth.ts:security)", status: "pending", activeForm: "Planning batch 1"},
{content: " → Batch 2: 3 findings (query.ts:security)", status: "pending", activeForm: "Planning batch 2"},
{content: " → Batch 3: 2 findings (config.ts:quality)", status: "pending", activeForm: "Planning batch 3"},
{content: "Phase 3: Execution", status: "pending", activeForm: "Executing"},
{content: "Phase 4: Completion", status: "pending", activeForm: "Completing"}
]
});
During Planning (parallel agents running):
TodoWrite({
todos: [
{content: "Phase 1: Discovery & Initialization", status: "completed", activeForm: "Discovering"},
{content: "Phase 1.5: Intelligent Batching", status: "completed", activeForm: "Batching"},
{content: "Phase 2: Parallel Planning", status: "in_progress", activeForm: "Planning"},
{content: " → Batch 1: 4 findings (auth.ts:security)", status: "completed", activeForm: "Planning batch 1"},
{content: " → Batch 2: 3 findings (query.ts:security)", status: "in_progress", activeForm: "Planning batch 2"},
{content: " → Batch 3: 2 findings (config.ts:quality)", status: "in_progress", activeForm: "Planning batch 3"},
{content: "Phase 3: Execution", status: "pending", activeForm: "Executing"},
{content: "Phase 4: Completion", status: "pending", activeForm: "Completing"}
]
});
During Execution:
TodoWrite({
todos: [
{content: "Phase 1: Discovery & Initialization", status: "completed", activeForm: "Discovering"},
{content: "Phase 1.5: Intelligent Batching", status: "completed", activeForm: "Batching"},
{content: "Phase 2: Parallel Planning (3 batches → 5 groups)", status: "completed", activeForm: "Planning"},
{content: "Phase 3: Execution", status: "in_progress", activeForm: "Executing"},
{content: " → Stage 1: Parallel execution (3 groups)", status: "completed", activeForm: "Executing stage 1"},
{content: " • Group G1: Auth validation (2 findings)", status: "completed", activeForm: "Fixing G1"},
{content: " • Group G2: Query security (3 findings)", status: "completed", activeForm: "Fixing G2"},
{content: " • Group G3: Config quality (1 finding)", status: "completed", activeForm: "Fixing G3"},
{content: " → Stage 2: Serial execution (1 group)", status: "in_progress", activeForm: "Executing stage 2"},
{content: " • Group G4: Dependent fixes (2 findings)", status: "in_progress", activeForm: "Fixing G4"},
{content: "Phase 4: Completion", status: "pending", activeForm: "Completing"}
]
});
Update Rules:
- Add batch items dynamically during Phase 1.5
- Mark batch items completed as parallel agents return results
- Add stage/group items dynamically after Phase 2 plan aggregation
- Mark completed immediately after each group finishes
- Update parent phase status when all child items complete
Post-Completion Expansion
完成后询问用户是否扩展为issue(test/enhance/refactor/doc),选中项调用 /issue:new "{summary} - {dimension}"
Best Practices
- Leverage Parallel Planning: For 10+ findings, parallel batching significantly reduces planning time
- Tune Batch Size: Use
--batch-sizeto control granularity (smaller batches = more parallelism, larger = better grouping context) - Conservative Approach: Test verification is mandatory - no fixes kept without passing tests
- Parallel Efficiency: MAX_PARALLEL=10 for planning agents, 3 concurrent execution agents per stage
- Resume Support: Fix sessions can resume from checkpoints after interruption
- Manual Review: Always review failed fixes manually - may require architectural changes
- Incremental Fixing: Start with small batches (5-10 findings) before large-scale fixes
Related Commands
View Fix Progress
Use ccw view to open the workflow dashboard in browser:
ccw view