mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-09 02:24:11 +08:00
- 更新所有69个命令文件的description字段,基于实际功能重新生成详细描述 - 重新生成5个索引文件(all-commands, by-category, by-use-case, essential-commands, command-relationships) - 移动analyze_commands.py到scripts/目录并完善功能 - 移除临时备份文件 命令描述改进示例: - workflow:plan: 增加了工具和代理的详细说明(Gemini, action-planning-agent) - cli:execute: 说明了YOLO权限和多种执行模式 - memory:update-related: 详细说明了批处理策略和工具回退链 索引文件改进: - usage_scenario从2种扩展到10种(更精细分类) - command-relationships覆盖所有69个命令 - 区分built-in(内置调用)和sequential(用户顺序执行)关系 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
4.7 KiB
4.7 KiB
name, description, examples
| name | description | examples | ||
|---|---|---|---|---|
| complete | Mark active workflow session as complete, archive with lessons learned, update manifest, remove active flag |
|
Complete Workflow Session (/workflow:session:complete)
Overview
Mark the currently active workflow session as complete, analyze it for lessons learned, move it to the archive directory, and remove the active flag marker.
Usage
/workflow:session:complete # Complete current active session
/workflow:session:complete --detailed # Show detailed completion summary
Implementation Flow
Phase 1: Prepare for Archival (Minimal Manual Operations)
Purpose: Find active session, move to archive location, pass control to agent. Minimal operations.
Step 1.1: Find Active Session and Get Name
# Find active marker
bash(find .workflow/ -name ".active-*" -type f | head -1)
# Extract session name from marker path
bash(basename .workflow/.active-WFS-session-name | sed 's/^\.active-//')
Output: Session name WFS-session-name
Step 1.2: Move Session to Archive
# Create archive directory if needed
bash(mkdir -p .workflow/.archives/)
# Move session to archive location
bash(mv .workflow/WFS-session-name .workflow/.archives/WFS-session-name)
Result: Session now at .workflow/.archives/WFS-session-name/
Phase 2: Agent-Orchestrated Completion (All Data Processing)
Purpose: Agent analyzes archived session, generates metadata, updates manifest, and removes active marker.
Agent Invocation
Invoke universal-executor agent to complete the archival process.
Agent Task:
Task(
subagent_type="universal-executor",
description="Complete session archival",
prompt=`
Complete workflow session archival. Session already moved to archive location.
## Context
- Session: .workflow/.archives/WFS-session-name/
- Active marker: .workflow/.active-WFS-session-name
## Tasks
1. **Extract session data** from workflow-session.json (session_id, description/topic, started_at/timestamp, completed_at, status)
- If status != "completed", update it with timestamp
2. **Count files**: tasks (.task/*.json) and summaries (.summaries/*.md)
3. **Generate lessons**: Use gemini with ~/.claude/workflows/cli-templates/prompts/archive/analysis-simple.txt (fallback: analyze files directly)
- Return: {successes, challenges, watch_patterns}
4. **Build archive entry**:
- Calculate: duration_hours, success_rate, tags (3-5 keywords)
- Construct complete JSON with session_id, description, archived_at, archive_path, metrics, tags, lessons
5. **Update manifest**: Initialize .workflow/.archives/manifest.json if needed, append entry
6. **Remove active marker**
7. **Return result**: {"status": "success", "session_id": "...", "archived_at": "...", "metrics": {...}, "lessons_summary": {...}}
## Error Handling
- On failure: return {"status": "error", "task": "...", "message": "..."}
- Do NOT remove marker if failed
`
)
Expected Output:
- Agent returns JSON result confirming successful archival
- Display completion summary to user based on agent response
Workflow Execution Strategy
Two-Phase Approach (Optimized)
Phase 1: Minimal Manual Setup (2 simple operations)
- Find active session and extract name
- Move session to archive location
- No data extraction - agent handles all data processing
- No counting - agent does this from archive location
- Total: 2 bash commands (find + move)
Phase 2: Agent-Driven Completion (1 agent invocation)
- Extract all session data from archived location
- Count tasks and summaries
- Generate lessons learned analysis
- Build complete archive metadata
- Update manifest
- Remove active marker
- Return success/error result
Quick Commands
# Phase 1: Find and move
bash(find .workflow/ -name ".active-*" -type f | head -1)
bash(basename .workflow/.active-WFS-session-name | sed 's/^\.active-//')
bash(mkdir -p .workflow/.archives/)
bash(mv .workflow/WFS-session-name .workflow/.archives/WFS-session-name)
# Phase 2: Agent completes archival
Task(subagent_type="universal-executor", description="Complete session archival", prompt=`...`)
Archive Query Commands
After archival, you can query the manifest:
# List all archived sessions
jq '.archives[].session_id' .workflow/.archives/manifest.json
# Find sessions by keyword
jq '.archives[] | select(.description | test("auth"; "i"))' .workflow/.archives/manifest.json
# Get specific session details
jq '.archives[] | select(.session_id == "WFS-user-auth")' .workflow/.archives/manifest.json
# List all watch patterns across sessions
jq '.archives[].lessons.watch_patterns[]' .workflow/.archives/manifest.json