Files
Claude-Code-Workflow/.claude/commands/workflow/session/complete.md
catlog22 920b179440 docs: 更新所有命令描述并重新生成索引文件
- 更新所有69个命令文件的description字段,基于实际功能重新生成详细描述
- 重新生成5个索引文件(all-commands, by-category, by-use-case, essential-commands, command-relationships)
- 移动analyze_commands.py到scripts/目录并完善功能
- 移除临时备份文件

命令描述改进示例:
- workflow:plan: 增加了工具和代理的详细说明(Gemini, action-planning-agent)
- cli:execute: 说明了YOLO权限和多种执行模式
- memory:update-related: 详细说明了批处理策略和工具回退链

索引文件改进:
- usage_scenario从2种扩展到10种(更精细分类)
- command-relationships覆盖所有69个命令
- 区分built-in(内置调用)和sequential(用户顺序执行)关系

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-06 15:11:31 +08:00

4.7 KiB

name, description, examples
name description examples
complete Mark active workflow session as complete, archive with lessons learned, update manifest, remove active flag
/workflow:session:complete
/workflow:session:complete --detailed

Complete Workflow Session (/workflow:session:complete)

Overview

Mark the currently active workflow session as complete, analyze it for lessons learned, move it to the archive directory, and remove the active flag marker.

Usage

/workflow:session:complete           # Complete current active session
/workflow:session:complete --detailed # Show detailed completion summary

Implementation Flow

Phase 1: Prepare for Archival (Minimal Manual Operations)

Purpose: Find active session, move to archive location, pass control to agent. Minimal operations.

Step 1.1: Find Active Session and Get Name

# Find active marker
bash(find .workflow/ -name ".active-*" -type f | head -1)

# Extract session name from marker path
bash(basename .workflow/.active-WFS-session-name | sed 's/^\.active-//')

Output: Session name WFS-session-name

Step 1.2: Move Session to Archive

# Create archive directory if needed
bash(mkdir -p .workflow/.archives/)

# Move session to archive location
bash(mv .workflow/WFS-session-name .workflow/.archives/WFS-session-name)

Result: Session now at .workflow/.archives/WFS-session-name/

Phase 2: Agent-Orchestrated Completion (All Data Processing)

Purpose: Agent analyzes archived session, generates metadata, updates manifest, and removes active marker.

Agent Invocation

Invoke universal-executor agent to complete the archival process.

Agent Task:

Task(
  subagent_type="universal-executor",
  description="Complete session archival",
  prompt=`
Complete workflow session archival. Session already moved to archive location.

## Context
- Session: .workflow/.archives/WFS-session-name/
- Active marker: .workflow/.active-WFS-session-name

## Tasks

1. **Extract session data** from workflow-session.json (session_id, description/topic, started_at/timestamp, completed_at, status)
   - If status != "completed", update it with timestamp

2. **Count files**: tasks (.task/*.json) and summaries (.summaries/*.md)

3. **Generate lessons**: Use gemini with ~/.claude/workflows/cli-templates/prompts/archive/analysis-simple.txt (fallback: analyze files directly)
   - Return: {successes, challenges, watch_patterns}

4. **Build archive entry**:
   - Calculate: duration_hours, success_rate, tags (3-5 keywords)
   - Construct complete JSON with session_id, description, archived_at, archive_path, metrics, tags, lessons

5. **Update manifest**: Initialize .workflow/.archives/manifest.json if needed, append entry

6. **Remove active marker**

7. **Return result**: {"status": "success", "session_id": "...", "archived_at": "...", "metrics": {...}, "lessons_summary": {...}}

## Error Handling
- On failure: return {"status": "error", "task": "...", "message": "..."}
- Do NOT remove marker if failed
  `
)

Expected Output:

  • Agent returns JSON result confirming successful archival
  • Display completion summary to user based on agent response

Workflow Execution Strategy

Two-Phase Approach (Optimized)

Phase 1: Minimal Manual Setup (2 simple operations)

  • Find active session and extract name
  • Move session to archive location
  • No data extraction - agent handles all data processing
  • No counting - agent does this from archive location
  • Total: 2 bash commands (find + move)

Phase 2: Agent-Driven Completion (1 agent invocation)

  • Extract all session data from archived location
  • Count tasks and summaries
  • Generate lessons learned analysis
  • Build complete archive metadata
  • Update manifest
  • Remove active marker
  • Return success/error result

Quick Commands

# Phase 1: Find and move
bash(find .workflow/ -name ".active-*" -type f | head -1)
bash(basename .workflow/.active-WFS-session-name | sed 's/^\.active-//')
bash(mkdir -p .workflow/.archives/)
bash(mv .workflow/WFS-session-name .workflow/.archives/WFS-session-name)

# Phase 2: Agent completes archival
Task(subagent_type="universal-executor", description="Complete session archival", prompt=`...`)

Archive Query Commands

After archival, you can query the manifest:

# List all archived sessions
jq '.archives[].session_id' .workflow/.archives/manifest.json

# Find sessions by keyword
jq '.archives[] | select(.description | test("auth"; "i"))' .workflow/.archives/manifest.json

# Get specific session details
jq '.archives[] | select(.session_id == "WFS-user-auth")' .workflow/.archives/manifest.json

# List all watch patterns across sessions
jq '.archives[].lessons.watch_patterns[]' .workflow/.archives/manifest.json