Files
Claude-Code-Workflow/.codex/skills/codex-issue-plan-execute/SKILL.md
catlog22 8cdd6a8b5f Add execution and planning agent prompts, specifications, and quality standards
- Created execution agent prompt for issue execution with detailed deliverables and validation criteria.
- Developed planning agent prompt to analyze issues and generate structured solution plans.
- Introduced issue handling specifications outlining the workflow and issue structure.
- Established quality standards for evaluating completeness, consistency, correctness, and clarity of solutions.
- Defined solution schema specification detailing the required structure and validation rules for solutions.
- Documented subagent roles and responsibilities, emphasizing the dual-agent strategy for improved workflow efficiency.
2026-01-29 15:15:42 +08:00

8.5 KiB

name, description, allowed-tools
name description allowed-tools
codex-issue-plan-execute Autonomous issue planning and execution workflow for Codex. Supports batch issue processing with integrated planning, queuing, and execution stages. Triggers on "codex-issue", "plan execute issue", "issue workflow". Task, AskUserQuestion, Read, Write, Bash, Glob, Grep

Codex Issue Plan-Execute Workflow

Streamlined autonomous workflow for Codex that integrates issue planning, queue management, and solution execution in a single stateful Skill. Supports batch processing with minimal queue overhead and dual-agent execution strategy.

Architecture Overview

┌─────────────────────────────────────────────────────────────────────┐
│  Main Orchestrator (Claude Code Entry Point)                        │
│  • Loads issues                                                      │
│  • Spawns persistent agents                                          │
│  • Manages pipeline flow                                             │
└──────┬──────────────────────────────────────┬──────────────────────┘
       │ spawn_agent(planning-system-prompt)  │ spawn_agent(execution-system-prompt)
       │ (创建一次)                            │ (创建一次)
       ▼                                       ▼
┌─────────────────────────────┐     ┌────────────────────────────────┐
│   Planning Agent            │     │   Execution Agent              │
│   (持久化 - 不关闭)         │     │   (持久化 - 不关闭)            │
│                             │     │                                │
│ Loop: receive issue →       │     │ Loop: receive solution →       │
│       analyze & design      │     │       implement & test         │
│       return solution       │     │       return results           │
└────────┬────────────────────┘     └────────┬─────────────────────┘
         │ send_input(issue)                  │ send_input(solution)
         │ wait for response                  │ wait for response
         │ (逐个 issue)                       │ (逐个 solution)
         ▼                                    ▼
   Planning Results                    Execution Results
   (unified JSON)                      (unified JSON)

Key Design Principles

  1. Persistent Agent Architecture: Two long-running agents (Planning + Execution) that never close until all work completes
  2. Pipeline Flow: Main orchestrator feeds issues sequentially to Planning Agent via send_input, then feeds solutions to Execution Agent via send_input
  3. Unified Results Storage: Single JSON files (planning-results.json, execution-results.json) accumulate all results instead of per-issue files
  4. Context Preservation: Agents maintain context across multiple tasks without being recreated
  5. Efficient Communication: Uses send_input() mechanism to communicate with agents without spawn/close overhead

⚠️ Mandatory Prerequisites (强制前置条件)

禁止跳过: 在执行任何操作之前,必须完整阅读以下文档。未阅读规范直接执行将导致输出不符合质量标准。

规范文档 (必读)

Document Purpose Priority
specs/issue-handling.md Issue 处理规范和数据结构 P0 - 最高
specs/solution-schema.md 解决方案数据结构和验证规则 P0 - 最高
specs/quality-standards.md 质量标准和验收条件 P1

参考文档 (背景知识)

Document Purpose
../issue-plan.md Codex Issue Plan 原始实现
../issue-execute.md Codex Issue Execute 原始实现
../codex SUBAGENT 策略补充.md Codex Subagent 使用指南

Execution Flow

Phase 1: Initialize Persistent Agents

→ Spawn Planning Agent with planning-agent-system.md prompt (stays alive) → Spawn Execution Agent with execution-agent-system.md prompt (stays alive)

Phase 2: Planning Pipeline

For each issue sequentially:

  1. Send issue to Planning Agent via send_input() with planning request
  2. Wait for Planning Agent to return solution JSON
  3. Store result in unified planning-results.json array
  4. Continue to next issue (agent stays alive)

Phase 3: Execution Pipeline

For each successful planning result sequentially:

  1. Send solution to Execution Agent via send_input() with execution request
  2. Wait for Execution Agent to complete implementation and testing
  3. Store result in unified execution-results.json array
  4. Continue to next solution (agent stays alive)

Phase 4: Finalize

→ Close Planning Agent (after all issues planned) → Close Execution Agent (after all solutions executed) → Generate final report with statistics

State Schema

{
  "status": "pending|running|completed",
  "phase": "init|listing|planning|executing|complete",
  "issues": {
    "{issue_id}": {
      "id": "ISS-xxx",
      "status": "registered|planning|planned|executing|completed",
      "solution_id": "SOL-xxx-1",
      "planned_at": "ISO-8601",
      "executed_at": "ISO-8601"
    }
  },
  "queue": [
    {
      "item_id": "S-1",
      "issue_id": "ISS-xxx",
      "solution_id": "SOL-xxx-1",
      "status": "pending|executing|completed"
    }
  ],
  "context": {
    "work_dir": ".workflow/.scratchpad/...",
    "total_issues": 0,
    "completed_count": 0,
    "failed_count": 0
  },
  "errors": []
}

Directory Setup

const timestamp = new Date().toISOString().slice(0,19).replace(/[-:T]/g, '');
const workDir = `.workflow/.scratchpad/codex-issue-${timestamp}`;

Bash(`mkdir -p "${workDir}"`);
Bash(`mkdir -p "${workDir}/solutions"`);
Bash(`mkdir -p "${workDir}/snapshots"`);

Output Structure

.workflow/.scratchpad/codex-issue-{timestamp}/
├── planning-results.json               # All planning results in single file
│   ├── phase: "planning"
│   ├── created_at: "ISO-8601"
│   └── results: [
│       { issue_id, solution_id, status, solution, planned_at }
│     ]
├── execution-results.json              # All execution results in single file
│   ├── phase: "execution"
│   ├── created_at: "ISO-8601"
│   └── results: [
│       { issue_id, solution_id, status, commit_hash, files_modified, executed_at }
│     ]
└── final-report.md                     # Summary statistics and report

Reference Documents

Document Purpose
phases/orchestrator.md Orchestrator 编排器逻辑
phases/actions/action-list.md List Issues 动作
phases/actions/action-plan.md Plan Solutions 动作
phases/actions/action-execute.md Execute Solutions 动作
phases/actions/action-complete.md Complete 动作
phases/state-schema.md 状态结构定义和验证
specs/issue-handling.md Issue 处理规范
specs/solution-schema.md 解决方案数据结构
specs/quality-standards.md 质量标准
specs/subagent-roles.md Subagent 角色定义

Usage Examples

Batch Process Specific Issues

codex -p "@.codex/prompts/codex-issue-plan-execute ISS-001,ISS-002,ISS-003"

Interactive Selection

codex -p "@.codex/prompts/codex-issue-plan-execute"
# Then select issues from the list

Resume from Snapshot

codex -p "@.codex/prompts/codex-issue-plan-execute --resume snapshot-path"

Skill Version: 1.0 Execution Mode: Autonomous Status: Ready for Customization