Complete redesign from manual document reading to SKILL activation pattern: **Before (Manual Loading)**: - Complex level selection logic (0-3) - Manual Read operations for each document - Task-based auto-level selection - ~200 lines of document loading code **After (Skill Activation)**: - Simple two-step: Validate → Activate - Use Skill(command: "skill_name") tool - System handles all documentation loading automatically - ~100 lines simpler, more maintainable **Key Changes**: 1. **Examples Updated**: - From: `/memory:load-skill-memory hydro_generator_module "分析热模型"` - To: `Skill(command: "hydro_generator_module")` 2. **Execution Flow Simplified**: - Step 1: Validate SKILL.md exists - Step 2: Skill(command: "skill_name") - System automatically handles progressive loading 3. **Removed Manual Logic**: - No explicit --level parameter - No manual document reading - No level selection algorithm - System determines context needs automatically 4. **Added SKILL Trigger Mechanism**: - Explains how SKILL description triggers work - Keyword matching (domain terms) - Action detection (analyzing, modifying, learning) - Memory gap detection - Path-based triggering 5. **Updated Integration Examples**: ```javascript Skill(command: "hydro_generator_module") SlashCommand(command: "/workflow:plan \"task\"") ``` **Benefits**: - Simpler user experience (just activate SKILL) - Automatic context optimization - System handles complexity - Follows Claude SKILL architecture - Leverages built-in SKILL trigger patterns **Philosophy Shift**: - From: Manual control over documentation loading - To: Trust SKILL system to load appropriate context - Aligns with skill-memory.md description optimization 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
8.4 KiB
Memory Load SKILL Command (/memory:load-skill-memory)
1. Overview
The memory:load-skill-memory command activates SKILL packages generated by /memory:skill-memory. It validates SKILL existence and uses the Skill() tool to load comprehensive documentation context.
Core Philosophy:
- Two-Step Process: Validate SKILL existence → Activate via Skill tool
- Automatic Context Loading: SKILL system loads appropriate documentation automatically
- No Manual Reading: Use Skill tool instead of manual Read operations
- Task-Driven Activation: System automatically determines required context based on SKILL description triggers
2. Parameters
<skill_name>(Required): Name of SKILL package to activate- Example:
hydro_generator_module - Example:
Claude_dms3 - Example:
multiphysics_network
- Example:
3. Two-Step Execution Flow
Step 1: Validate SKILL Existence
Check SKILL.md File:
bash(test -f .claude/skills/{skill_name}/SKILL.md && echo "exists" || echo "not_found")
Validation Logic:
- If
exists: Continue to Step 2 - If
not_found: Return error message with available SKILLs:bash(ls -1 .claude/skills/ 2>/dev/null || echo "No SKILLs available")
Error Message Format:
❌ SKILL '{skill_name}' not found.
Available SKILLs:
- hydro_generator_module (D:\dongdiankaifa9\hydro_generator_module)
- Claude_dms3 (D:\Claude_dms3)
Use: Skill(command: "skill_name")
Generate new SKILL: /memory:skill-memory [path]
Step 2: Activate SKILL Package
Use Skill Tool to Activate:
Skill(command: "{skill_name}")
What Happens:
- Claude's SKILL system reads
.claude/skills/{skill_name}/SKILL.md - Automatically loads appropriate documentation based on:
- SKILL description triggers (analyzing, modifying, learning)
- Current conversation context
- Memory gaps detection
- Progressive loading levels (0-3) handled automatically by system
- Context loaded directly into conversation memory
No Manual Reading Required: The Skill tool handles all documentation loading automatically based on SKILL.md configuration.
4. Output Format
Success Output:
✅ Activated SKILL: {skill_name}
📦 SKILL Package Information:
- Location: {project_path}
- Description: {description from SKILL.md}
- Documentation: .workflow/docs/{skill_name}/
💡 Context loaded automatically by SKILL system based on:
- Current task requirements
- Conversation memory gaps
- SKILL description triggers
🎯 Ready for: analyzing, modifying, or learning about {domain_description}
5. Usage Examples
Example 1: Activate Hydro Generator Module SKILL
User Request: "分析热模型builder pattern实现"
Command Execution:
// Step 1: Validate
bash(test -f .claude/skills/hydro_generator_module/SKILL.md && echo "exists")
// Output: exists
// Step 2: Activate
Skill(command: "hydro_generator_module")
SKILL Activation:
- System reads
.claude/skills/hydro_generator_module/SKILL.md - Description triggers match: "analyzing" + "hydro-generator thermal modeling"
- Automatically loads appropriate documentation (Level 1-2)
- Context available for subsequent analysis
Example 2: Activate Workflow System SKILL
User Request: "修改文档生成workflow调度逻辑"
Command Execution:
// Step 1: Validate
bash(test -f .claude/skills/Claude_dms3/SKILL.md && echo "exists")
// Output: exists
// Step 2: Activate
Skill(command: "Claude_dms3")
SKILL Activation:
- Description triggers match: "modifying" + "workflow management"
- System loads comprehensive documentation (Level 2-3)
- Ready for workflow modification tasks
Example 3: Activate Multi-Physics Network SKILL
User Request: "学习电磁域组件设计模式"
Command Execution:
// Step 1: Validate
bash(test -f .claude/skills/multiphysics_network/SKILL.md && echo "exists")
// Output: exists
// Step 2: Activate
Skill(command: "multiphysics_network")
SKILL Activation:
- Description triggers match: "learning" + "multi-physics"
- System provides overview and core module docs (Level 0-1)
- Context available for exploration
6. SKILL Trigger Mechanism
How SKILL System Determines Context Loading:
The SKILL.md description includes trigger patterns that automatically activate when:
-
Keyword Matching:
- User mentions domain keywords (e.g., "热模型", "workflow", "多物理场")
- Description keywords match task requirements
-
Action Detection:
- "analyzing" triggers for analysis tasks
- "modifying" triggers for code modification
- "learning" triggers for exploration
-
Memory Gap Detection:
- "especially when no relevant context exists in memory"
- System prioritizes SKILL loading when conversation lacks context
-
Path-Based Triggering:
- User mentions file paths matching SKILL location
- "files under this path" clause activates
Progressive Loading (Automatic):
- Level 0: ~2K tokens (Quick overview)
- Level 1: ~10K tokens (Core modules)
- Level 2: ~25K tokens (Complete system)
- Level 3: ~40K tokens (Full documentation)
System automatically selects appropriate level based on task complexity and context requirements.
7. Implementation Steps
Execution Logic:
// Step 1: Validate SKILL existence
skill_path = `.claude/skills/${skill_name}/SKILL.md`
if (!exists(skill_path)) {
list_available_skills()
return error_message
}
// Step 2: Activate SKILL
Skill(command: skill_name)
// Step 3: System handles automatically
// - Reads SKILL.md description
// - Matches triggers with task context
// - Loads appropriate documentation level
// - Injects context into conversation memory
// Step 4: Confirm activation
output_success_message(skill_name, project_path, description)
8. Error Handling
SKILL Not Found
❌ SKILL 'unknown_module' not found.
Available SKILLs:
- hydro_generator_module (D:\dongdiankaifa9\hydro_generator_module)
- Claude_dms3 (D:\Claude_dms3)
Activate SKILL: Skill(command: "skill_name")
Generate new SKILL: /memory:skill-memory [path]
Documentation Missing
⚠️ SKILL 'hydro_generator_module' exists but documentation incomplete.
Missing files:
- .workflow/docs/hydro_generator_module/ARCHITECTURE.md
Regenerate documentation: /memory:skill-memory --regenerate
9. Integration with Other Commands
Workflow Integration:
// 1. Activate SKILL context
Skill(command: "hydro_generator_module")
// 2. Use loaded context for planning
SlashCommand(command: "/workflow:plan \"增强thermal template支持动态阻抗\"")
// 3. Execute implementation
SlashCommand(command: "/workflow:execute")
Memory Refresh Pattern:
// Refresh SKILL context after code changes
Skill(command: "hydro_generator_module")
// System automatically detects changes and loads updated documentation
10. Token Optimization Strategy
Automatic Progressive Loading: The SKILL system automatically handles token optimization:
- Initial Load: Starts with minimum required context
- On-Demand Escalation: Loads more documentation if needed
- Task-Driven: Adjusts depth based on task complexity
- Memory-Aware: Avoids loading redundant context
Token Budget (Automatic):
- Simple queries: ~2-10K tokens
- Code analysis: ~10-25K tokens
- Implementation: ~25-40K tokens
Optimization Benefits:
- No manual level selection required
- System learns from conversation context
- Efficient memory usage
- Automatic reload when context insufficient
11. Notes
- Validation First: Always checks SKILL existence before activation
- Automatic Loading: Skill tool handles all documentation reading
- Session-Scoped: Activated SKILL context valid for current session
- Trigger-Based: Description patterns drive automatic activation
- Path-Aware: Triggers on project path mentions
- Memory-Smart: Prioritizes loading when conversation lacks context
- Read-Only: Does not modify SKILL files or documentation
- Reactivation: Can re-activate SKILL to refresh context after changes