mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-10 02:24:35 +08:00
- Replace $PROTO/$TMPL environment variable injection with systemRules/roles direct concatenation - Append rules to END of prompt instead of prepending - Change prompt field name from RULES to CONSTRAINTS in all prompts - Default to universal-rigorous-style template when --rule not specified - Update all .claude documentation, agents, commands, and skills - Add streaming_content type support for Gemini delta messages Breaking: Prompts now use CONSTRAINTS field instead of RULES
12 KiB
12 KiB
name, description, argument-hint, allowed-tools
| name | description | argument-hint | allowed-tools |
|---|---|---|---|
| plan | Batch plan issue resolution using issue-plan-agent (explore + plan closed-loop) | --all-pending <issue-id>[,<issue-id>,...] [--batch-size 3] | TodoWrite(*), Task(*), SlashCommand(*), AskUserQuestion(*), Bash(*), Read(*), Write(*) |
Issue Plan Command (/issue:plan)
Overview
Unified planning command using issue-plan-agent that combines exploration and planning into a single closed-loop workflow.
Behavior:
- Single solution per issue → auto-bind
- Multiple solutions → return for user selection
- Agent handles file generation
Core Guidelines
⚠️ Data Access Principle: Issues and solutions files can grow very large. To avoid context overflow:
| Operation | Correct | Incorrect |
|---|---|---|
| List issues (brief) | ccw issue list --status pending --brief |
Read('issues.jsonl') |
| Read issue details | ccw issue status <id> --json |
Read('issues.jsonl') |
| Update status | ccw issue update <id> --status ... |
Direct file edit |
| Bind solution | ccw issue bind <id> <sol-id> |
Direct file edit |
Output Options:
--brief: JSON with minimal fields (id, title, status, priority, tags)--json: Full JSON (agent use only)
Orchestration vs Execution:
- Command (orchestrator): Use
--brieffor minimal context - Agent (executor): Fetch full details →
ccw issue status <id> --json
ALWAYS use CLI commands for CRUD operations. NEVER read entire issues.jsonl or solutions/*.jsonl directly.
Usage
/issue:plan [<issue-id>[,<issue-id>,...]] [FLAGS]
# Examples
/issue:plan # Default: --all-pending
/issue:plan GH-123 # Single issue
/issue:plan GH-123,GH-124,GH-125 # Batch (up to 3)
/issue:plan --all-pending # All pending issues (explicit)
# Flags
--batch-size <n> Max issues per agent batch (default: 3)
Execution Process
Phase 1: Issue Loading
├─ Parse input (single, comma-separated, or --all-pending)
├─ Fetch issue metadata (ID, title, tags)
├─ Validate issues exist (create if needed)
└─ Group by similarity (shared tags or title keywords, max 3 per batch)
Phase 2: Unified Explore + Plan (issue-plan-agent)
├─ Launch issue-plan-agent per batch
├─ Agent performs:
│ ├─ ACE semantic search for each issue
│ ├─ Codebase exploration (files, patterns, dependencies)
│ ├─ Solution generation with task breakdown
│ └─ Conflict detection across issues
└─ Output: solution JSON per issue
Phase 3: Solution Registration & Binding
├─ Append solutions to solutions/{issue-id}.jsonl
├─ Single solution per issue → auto-bind
├─ Multiple candidates → AskUserQuestion to select
└─ Update issues.jsonl with bound_solution_id
Phase 4: Summary
├─ Display bound solutions
├─ Show task counts per issue
└─ Display next steps (/issue:queue)
Implementation
Phase 1: Issue Loading (Brief Info Only)
const batchSize = flags.batchSize || 3;
let issues = []; // {id, title, tags} - brief info for grouping only
// Default to --all-pending if no input provided
const useAllPending = flags.allPending || !userInput || userInput.trim() === '';
if (useAllPending) {
// Get pending issues with brief metadata via CLI
const result = Bash(`ccw issue list --status pending,registered --json`).trim();
const parsed = result ? JSON.parse(result) : [];
issues = parsed.map(i => ({ id: i.id, title: i.title || '', tags: i.tags || [] }));
if (issues.length === 0) {
console.log('No pending issues found.');
return;
}
console.log(`Found ${issues.length} pending issues`);
} else {
// Parse comma-separated issue IDs, fetch brief metadata
const ids = userInput.includes(',')
? userInput.split(',').map(s => s.trim())
: [userInput.trim()];
for (const id of ids) {
Bash(`ccw issue init ${id} --title "Issue ${id}" 2>/dev/null || true`);
const info = Bash(`ccw issue status ${id} --json`).trim();
const parsed = info ? JSON.parse(info) : {};
issues.push({ id, title: parsed.title || '', tags: parsed.tags || [] });
}
}
// Note: Agent fetches full issue content via `ccw issue status <id> --json`
// Semantic grouping via Gemini CLI (max 4 issues per group)
async function groupBySimilarityGemini(issues) {
const issueSummaries = issues.map(i => ({
id: i.id, title: i.title, tags: i.tags
}));
const prompt = `
PURPOSE: Group similar issues by semantic similarity for batch processing; maximize within-group coherence; max 4 issues per group
TASK: • Analyze issue titles/tags semantically • Identify functional/architectural clusters • Assign each issue to one group
MODE: analysis
CONTEXT: Issue metadata only
EXPECTED: JSON with groups array, each containing max 4 issue_ids, theme, rationale
CONSTRAINTS: Each issue in exactly one group | Max 4 issues per group | Balance group sizes
INPUT:
${JSON.stringify(issueSummaries, null, 2)}
OUTPUT FORMAT:
{"groups":[{"group_id":1,"theme":"...","issue_ids":["..."],"rationale":"..."}],"ungrouped":[]}
`;
const taskId = Bash({
command: `ccw cli -p "${prompt}" --tool gemini --mode analysis`,
run_in_background: true, timeout: 600000
});
const output = TaskOutput({ task_id: taskId, block: true });
// Extract JSON from potential markdown code blocks
function extractJsonFromMarkdown(text) {
const jsonMatch = text.match(/```json\s*\n([\s\S]*?)\n```/) ||
text.match(/```\s*\n([\s\S]*?)\n```/);
return jsonMatch ? jsonMatch[1] : text;
}
const result = JSON.parse(extractJsonFromMarkdown(output));
return result.groups.map(g => g.issue_ids.map(id => issues.find(i => i.id === id)));
}
const batches = await groupBySimilarityGemini(issues);
console.log(`Processing ${issues.length} issues in ${batches.length} batch(es) (max 4 issues/agent)`);
TodoWrite({
todos: batches.map((_, i) => ({
content: `Plan batch ${i+1}`,
status: 'pending',
activeForm: `Planning batch ${i+1}`
}))
});
Phase 2: Unified Explore + Plan (issue-plan-agent) - PARALLEL
Bash(`mkdir -p .workflow/issues/solutions`);
const pendingSelections = []; // Collect multi-solution issues for user selection
const agentResults = []; // Collect all agent results for conflict aggregation
// Build prompts for all batches
const agentTasks = batches.map((batch, batchIndex) => {
const issueList = batch.map(i => `- ${i.id}: ${i.title}${i.tags.length ? ` [${i.tags.join(', ')}]` : ''}`).join('\n');
const batchIds = batch.map(i => i.id);
const issuePrompt = `
## Plan Issues
**Issues** (grouped by similarity):
${issueList}
**Project Root**: ${process.cwd()}
### Project Context (MANDATORY)
1. Read: .workflow/project-tech.json (technology stack, architecture)
2. Read: .workflow/project-guidelines.json (constraints and conventions)
### Workflow
1. Fetch issue details: ccw issue status <id> --json
2. Load project context files
3. Explore codebase (ACE semantic search)
4. Plan solution with tasks (schema: solution-schema.json)
5. **If github_url exists**: Add final task to comment on GitHub issue
6. Write solution to: .workflow/issues/solutions/{issue-id}.jsonl
7. Single solution → auto-bind; Multiple → return for selection
### Rules
- Solution ID format: SOL-{issue-id}-{uid} (uid: 4 random alphanumeric chars, e.g., a7x9)
- Single solution per issue → auto-bind via ccw issue bind
- Multiple solutions → register only, return pending_selection
- Tasks must have quantified acceptance.criteria
### Return Summary
{"bound":[{"issue_id":"...","solution_id":"...","task_count":N}],"pending_selection":[{"issue_id":"...","solutions":[{"id":"...","description":"...","task_count":N}]}]}
`;
return { batchIndex, batchIds, issuePrompt, batch };
});
// Launch agents in parallel (max 10 concurrent)
const MAX_PARALLEL = 10;
for (let i = 0; i < agentTasks.length; i += MAX_PARALLEL) {
const chunk = agentTasks.slice(i, i + MAX_PARALLEL);
const taskIds = [];
// Launch chunk in parallel
for (const { batchIndex, batchIds, issuePrompt, batch } of chunk) {
updateTodo(`Plan batch ${batchIndex + 1}`, 'in_progress');
const taskId = Task(
subagent_type="issue-plan-agent",
run_in_background=true,
description=`Explore & plan ${batch.length} issues: ${batchIds.join(', ')}`,
prompt=issuePrompt
);
taskIds.push({ taskId, batchIndex });
}
console.log(`Launched ${taskIds.length} agents (batch ${i/MAX_PARALLEL + 1}/${Math.ceil(agentTasks.length/MAX_PARALLEL)})...`);
// Collect results from this chunk
for (const { taskId, batchIndex } of taskIds) {
const result = TaskOutput(task_id=taskId, block=true);
// Extract JSON from potential markdown code blocks (agent may wrap in ```json...```)
const jsonText = extractJsonFromMarkdown(result);
let summary;
try {
summary = JSON.parse(jsonText);
} catch (e) {
console.log(`⚠ Batch ${batchIndex + 1}: Failed to parse agent result, skipping`);
updateTodo(`Plan batch ${batchIndex + 1}`, 'completed');
continue;
}
agentResults.push(summary); // Store for Phase 3 conflict aggregation
for (const item of summary.bound || []) {
console.log(`✓ ${item.issue_id}: ${item.solution_id} (${item.task_count} tasks)`);
}
// Collect and notify pending selections
for (const pending of summary.pending_selection || []) {
console.log(`⏳ ${pending.issue_id}: ${pending.solutions.length} solutions → awaiting selection`);
pendingSelections.push(pending);
}
if (summary.conflicts?.length > 0) {
console.log(`⚠ Conflicts: ${summary.conflicts.length} detected (will resolve in Phase 3)`);
}
updateTodo(`Plan batch ${batchIndex + 1}`, 'completed');
}
}
Phase 3: Conflict Resolution & Solution Selection
Conflict Handling:
- Collect
conflictsfrom all agent results - Low/Medium severity → auto-resolve with
recommended_resolution - High severity → use
AskUserQuestionto let user choose resolution
Multi-Solution Selection:
- If
pending_selectioncontains issues with multiple solutions:- Use
AskUserQuestionto present options (solution ID + task count + description) - Extract selected solution ID from user response
- Verify solution file exists, recover from payload if missing
- Bind selected solution via
ccw issue bind <issue-id> <solution-id>
- Use
Phase 4: Summary
// Count planned issues via CLI
const planned = JSON.parse(Bash(`ccw issue list --status planned --brief`) || '[]');
const plannedCount = planned.length;
console.log(`
## Done: ${issues.length} issues → ${plannedCount} planned
Next: \`/issue:queue\` → \`/issue:execute\`
`);
Error Handling
| Error | Resolution |
|---|---|
| Issue not found | Auto-create in issues.jsonl |
| ACE search fails | Agent falls back to ripgrep |
| No solutions generated | Display error, suggest manual planning |
| User cancels selection | Skip issue, continue with others |
| File conflicts | Agent detects and suggests resolution order |
Bash Compatibility
Avoid: $(cmd), $var, for loops — will be escaped incorrectly
Use: Simple commands + && chains, quote comma params "pending,registered"
Quality Checklist
Before completing, verify:
- All input issues have solutions in
solutions/{issue-id}.jsonl - Single solution issues are auto-bound (
bound_solution_idset) - Multi-solution issues returned in
pending_selectionfor user choice - Each solution has executable tasks with
modification_points - Task acceptance criteria are quantified (not vague)
- Conflicts detected and reported (if multiple issues touch same files)
- Issue status updated to
plannedafter binding
Related Commands
/issue:queue- Form execution queue from bound solutionsccw issue list- List all issuesccw issue status- View issue and solution details