mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-13 02:41:50 +08:00
23 KiB
23 KiB
name, description, allowed-tools
| name | description | allowed-tools |
|---|---|---|
| skill-tuning | Universal skill diagnosis and optimization tool. Detect and fix skill execution issues including context explosion, long-tail forgetting, data flow disruption, and agent coordination failures. Supports Gemini CLI for deep analysis. Triggers on "skill tuning", "tune skill", "skill diagnosis", "optimize skill", "skill debug". | Task, AskUserQuestion, Read, Write, Bash, Glob, Grep, mcp__ace-tool__search_context |
Skill Tuning
Universal skill diagnosis and optimization tool that identifies and resolves skill execution problems through iterative multi-agent analysis.
Architecture Overview
┌─────────────────────────────────────────────────────────────────────────────┐
│ Skill Tuning Architecture (Autonomous Mode + Gemini CLI) │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ ⚠️ Phase 0: Specification → 阅读规范 + 理解目标 skill 结构 (强制前置) │
│ Study │
│ ↓ │
│ ┌───────────────────────────────────────────────────────────────────────┐ │
│ │ Orchestrator (状态驱动决策) │ │
│ │ 读取诊断状态 → 选择下一步动作 → 执行 → 更新状态 → 循环直到完成 │ │
│ └───────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌────────────┬───────────┼───────────┬────────────┬────────────┐ │
│ ↓ ↓ ↓ ↓ ↓ ↓ │
│ ┌──────┐ ┌──────────┐ ┌─────────┐ ┌────────┐ ┌────────┐ ┌─────────┐ │
│ │ Init │→ │ Analyze │→ │Diagnose │ │Diagnose│ │Diagnose│ │ Gemini │ │
│ │ │ │Requiremts│ │ Context │ │ Memory │ │DataFlow│ │Analysis │ │
│ └──────┘ └──────────┘ └─────────┘ └────────┘ └────────┘ └─────────┘ │
│ │ │ │ │ │ │
│ │ └───────────┴───────────┴────────────┘ │
│ ↓ │
│ ┌───────────────────────────────────────────────────────────────────────┐ │
│ │ Requirement Analysis (NEW) │ │
│ │ • Phase 1: 维度拆解 (Gemini CLI) - 单一描述 → 多个关注维度 │ │
│ │ • Phase 2: Spec 匹配 - 每个维度 → taxonomy + strategy │ │
│ │ • Phase 3: 覆盖度评估 - 以"有修复策略"为满足标准 │ │
│ │ • Phase 4: 歧义检测 - 识别多义性描述,必要时请求澄清 │ │
│ └───────────────────────────────────────────────────────────────────────┘ │
│ ↓ │
│ ┌──────────────────┐ │
│ │ Apply Fixes + │ │
│ │ Verify Results │ │
│ └──────────────────┘ │
│ │
│ ┌───────────────────────────────────────────────────────────────────────┐ │
│ │ Gemini CLI Integration │ │
│ │ 根据用户需求动态调用 gemini cli 进行深度分析: │ │
│ │ • 需求维度拆解 (requirement decomposition) │ │
│ │ • 复杂问题分析 (prompt engineering, architecture review) │ │
│ │ • 代码模式识别 (pattern matching, anti-pattern detection) │ │
│ │ • 修复策略生成 (fix generation, refactoring suggestions) │ │
│ └───────────────────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
Problem Domain
Based on comprehensive analysis, skill-tuning addresses core skill issues and general optimization areas:
Core Skill Issues (自动检测)
| Priority | Problem | Root Cause | Solution Strategy |
|---|---|---|---|
| P0 | Data Flow Disruption | Scattered state, inconsistent formats | Centralized session store, transactional updates |
| P1 | Agent Coordination | Fragile call chains, merge complexity | Dedicated orchestrator, enforced data contracts |
| P2 | Context Explosion | Token accumulation, multi-turn bloat | Context summarization, sliding window, structured state |
| P3 | Long-tail Forgetting | Early constraint loss | Constraint injection, checkpointing, goal alignment |
General Optimization Areas (按需分析 via Gemini CLI)
| Category | Issues | Gemini Analysis Scope |
|---|---|---|
| Prompt Engineering | 模糊指令, 输出格式不一致, 幻觉风险 | 提示词优化, 结构化输出设计 |
| Architecture | 阶段划分不合理, 依赖混乱, 扩展性差 | 架构审查, 模块化建议 |
| Performance | 执行慢, Token消耗高, 重复计算 | 性能分析, 缓存策略 |
| Error Handling | 错误恢复不当, 无降级策略, 日志不足 | 容错设计, 可观测性增强 |
| Output Quality | 输出不稳定, 格式漂移, 质量波动 | 质量门控, 验证机制 |
| User Experience | 交互不流畅, 反馈不清晰, 进度不可见 | UX优化, 进度追踪 |
Key Design Principles
- Problem-First Diagnosis: Systematic identification before any fix attempt
- Data-Driven Analysis: Record execution traces, token counts, state snapshots
- Iterative Refinement: Multiple tuning rounds until quality gates pass
- Non-Destructive: All changes are reversible with backup checkpoints
- Agent Coordination: Use specialized sub-agents for each diagnosis type
- Gemini CLI On-Demand: Deep analysis via CLI for complex/custom issues
Gemini CLI Integration
根据用户需求动态调用 Gemini CLI 进行深度分析。
Trigger Conditions
| Condition | Action | CLI Mode |
|---|---|---|
| 用户描述复杂问题 | 调用 Gemini 分析问题根因 | analysis |
| 自动诊断发现 critical 问题 | 请求深度分析确认 | analysis |
| 用户请求架构审查 | 执行架构分析 | analysis |
| 需要生成修复代码 | 生成修复提案 | write |
| 标准策略不适用 | 请求定制化策略 | analysis |
CLI Command Template
ccw cli -p "
PURPOSE: ${purpose}
TASK: ${task_steps}
MODE: ${mode}
CONTEXT: @${skill_path}/**/*
EXPECTED: ${expected_output}
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/${mode}-protocol.md) | ${constraints}
" --tool gemini --mode ${mode} --cd ${skill_path}
Analysis Types
1. Problem Root Cause Analysis
ccw cli -p "
PURPOSE: Identify root cause of skill execution issue: ${user_issue_description}
TASK: • Analyze skill structure and phase flow • Identify anti-patterns • Trace data flow issues
MODE: analysis
CONTEXT: @**/*.md
EXPECTED: JSON with { root_causes: [], patterns_found: [], recommendations: [] }
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md) | Focus on execution flow
" --tool gemini --mode analysis
2. Architecture Review
ccw cli -p "
PURPOSE: Review skill architecture for scalability and maintainability
TASK: • Evaluate phase decomposition • Check state management patterns • Assess agent coordination
MODE: analysis
CONTEXT: @**/*.md
EXPECTED: Architecture assessment with improvement recommendations
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md) | Focus on modularity
" --tool gemini --mode analysis
3. Fix Strategy Generation
ccw cli -p "
PURPOSE: Generate fix strategy for issue: ${issue_id} - ${issue_description}
TASK: • Analyze issue context • Design fix approach • Generate implementation plan
MODE: analysis
CONTEXT: @**/*.md
EXPECTED: JSON with { strategy: string, changes: [], verification_steps: [] }
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md) | Minimal invasive changes
" --tool gemini --mode analysis
Mandatory Prerequisites
CRITICAL: Read these documents before executing any action.
Core Specs (Required)
| Document | Purpose | Priority |
|---|---|---|
| specs/skill-authoring-principles.md | 首要准则:简洁高效、去除存储、上下文流转 | P0 |
| specs/problem-taxonomy.md | Problem classification and detection patterns | P0 |
| specs/tuning-strategies.md | Fix strategies for each problem type | P0 |
| specs/dimension-mapping.md | Dimension to Spec mapping rules | P0 |
| specs/quality-gates.md | Quality thresholds and verification criteria | P1 |
Templates (Reference)
| Document | Purpose |
|---|---|
| templates/diagnosis-report.md | Diagnosis report structure |
| templates/fix-proposal.md | Fix proposal format |
Execution Flow
┌─────────────────────────────────────────────────────────────────────────────┐
│ Phase 0: Specification Study (强制前置 - 禁止跳过) │
│ → Read: specs/problem-taxonomy.md (问题分类) │
│ → Read: specs/tuning-strategies.md (调优策略) │
│ → Read: specs/dimension-mapping.md (维度映射规则) │
│ → Read: Target skill's SKILL.md and phases/*.md │
│ → Output: 内化规范,理解目标 skill 结构 │
├─────────────────────────────────────────────────────────────────────────────┤
│ action-init: Initialize Tuning Session │
│ → Create work directory: .workflow/.scratchpad/skill-tuning-{timestamp} │
│ → Initialize state.json with target skill info │
│ → Create backup of target skill files │
├─────────────────────────────────────────────────────────────────────────────┤
│ action-analyze-requirements: Requirement Analysis (NEW) │
│ → Phase 1: 维度拆解 (Gemini CLI) - 单一描述 → 多个关注维度 │
│ → Phase 2: Spec 匹配 - 每个维度 → taxonomy + strategy │
│ → Phase 3: 覆盖度评估 - 以"有修复策略"为满足标准 │
│ → Phase 4: 歧义检测 - 识别多义性描述,必要时请求澄清 │
│ → Output: requirement-analysis.json, 自动优化 focus_areas │
├─────────────────────────────────────────────────────────────────────────────┤
│ action-diagnose-context: Context Explosion Analysis │
│ → Scan for token accumulation patterns │
│ → Detect multi-turn dialogue growth │
│ → Output: context-diagnosis.json │
├─────────────────────────────────────────────────────────────────────────────┤
│ action-diagnose-memory: Long-tail Forgetting Analysis │
│ → Trace constraint propagation through phases │
│ → Detect early instruction loss │
│ → Output: memory-diagnosis.json │
├─────────────────────────────────────────────────────────────────────────────┤
│ action-diagnose-dataflow: Data Flow Analysis │
│ → Map state transitions between phases │
│ → Detect format inconsistencies │
│ → Output: dataflow-diagnosis.json │
├─────────────────────────────────────────────────────────────────────────────┤
│ action-diagnose-agent: Agent Coordination Analysis │
│ → Analyze agent call patterns │
│ → Detect result passing issues │
│ → Output: agent-diagnosis.json │
├─────────────────────────────────────────────────────────────────────────────┤
│ action-generate-report: Consolidated Report │
│ → Merge all diagnosis results │
│ → Prioritize issues by severity │
│ → Output: tuning-report.md │
├─────────────────────────────────────────────────────────────────────────────┤
│ action-propose-fixes: Fix Proposal Generation │
│ → Generate fix strategies for each issue │
│ → Create implementation plan │
│ → Output: fix-proposals.json │
├─────────────────────────────────────────────────────────────────────────────┤
│ action-apply-fix: Apply Selected Fix │
│ → User selects fix to apply │
│ → Execute fix with backup │
│ → Update state with fix result │
├─────────────────────────────────────────────────────────────────────────────┤
│ action-verify: Verification │
│ → Re-run affected diagnosis │
│ → Check quality gates │
│ → Update iteration count │
├─────────────────────────────────────────────────────────────────────────────┤
│ action-complete: Finalization │
│ → Generate final report │
│ → Cleanup temporary files │
│ → Output: tuning-summary.md │
└─────────────────────────────────────────────────────────────────────────────┘
Directory Setup
const timestamp = new Date().toISOString().slice(0,19).replace(/[-:T]/g, '');
const workDir = `.workflow/.scratchpad/skill-tuning-${timestamp}`;
Bash(`mkdir -p "${workDir}/diagnosis"`);
Bash(`mkdir -p "${workDir}/backups"`);
Bash(`mkdir -p "${workDir}/fixes"`);
Output Structure
.workflow/.scratchpad/skill-tuning-{timestamp}/
├── state.json # Session state (orchestrator-managed)
├── diagnosis/
│ ├── context-diagnosis.json # Context explosion analysis
│ ├── memory-diagnosis.json # Long-tail forgetting analysis
│ ├── dataflow-diagnosis.json # Data flow analysis
│ └── agent-diagnosis.json # Agent coordination analysis
├── backups/
│ └── {skill-name}-backup/ # Original skill files backup
├── fixes/
│ ├── fix-proposals.json # Proposed fixes
│ └── applied-fixes.json # Applied fix history
├── tuning-report.md # Consolidated diagnosis report
└── tuning-summary.md # Final summary
State Schema
interface TuningState {
status: 'pending' | 'running' | 'completed' | 'failed';
target_skill: {
name: string;
path: string;
execution_mode: 'sequential' | 'autonomous';
};
user_issue_description: string;
diagnosis: {
context: DiagnosisResult | null;
memory: DiagnosisResult | null;
dataflow: DiagnosisResult | null;
agent: DiagnosisResult | null;
};
issues: Issue[];
proposed_fixes: Fix[];
applied_fixes: AppliedFix[];
iteration_count: number;
max_iterations: number;
quality_score: number;
completed_actions: string[];
current_action: string | null;
errors: Error[];
error_count: number;
}
interface DiagnosisResult {
status: 'completed' | 'skipped';
issues_found: number;
severity: 'critical' | 'high' | 'medium' | 'low' | 'none';
details: any;
}
interface Issue {
id: string;
type: 'context_explosion' | 'memory_loss' | 'dataflow_break' | 'agent_failure';
severity: 'critical' | 'high' | 'medium' | 'low';
location: string;
description: string;
evidence: string[];
}
interface Fix {
id: string;
issue_id: string;
strategy: string;
description: string;
changes: FileChange[];
risk: 'low' | 'medium' | 'high';
}
Reference Documents
| Document | Purpose |
|---|---|
| phases/orchestrator.md | Orchestrator decision logic |
| phases/state-schema.md | State structure definition |
| phases/actions/action-init.md | Initialize tuning session |
| phases/actions/action-analyze-requirements.md | Requirement analysis (NEW) |
| phases/actions/action-diagnose-context.md | Context explosion diagnosis |
| phases/actions/action-diagnose-memory.md | Long-tail forgetting diagnosis |
| phases/actions/action-diagnose-dataflow.md | Data flow diagnosis |
| phases/actions/action-diagnose-agent.md | Agent coordination diagnosis |
| phases/actions/action-generate-report.md | Report generation |
| phases/actions/action-propose-fixes.md | Fix proposal |
| phases/actions/action-apply-fix.md | Fix application |
| phases/actions/action-verify.md | Verification |
| phases/actions/action-complete.md | Finalization |
| specs/problem-taxonomy.md | Problem classification |
| specs/tuning-strategies.md | Fix strategies |
| specs/dimension-mapping.md | Dimension to Spec mapping (NEW) |
| specs/quality-gates.md | Quality criteria |