Files
Claude-Code-Workflow/.claude/commands/issue/plan.md

11 KiB

name, description, argument-hint, allowed-tools
name description argument-hint allowed-tools
plan Batch plan issue resolution using issue-plan-agent (explore + plan closed-loop) --all-pending <issue-id>[,<issue-id>,...] [--batch-size 3] TodoWrite(*), Task(*), SlashCommand(*), AskUserQuestion(*), Bash(*), Read(*), Write(*)

Issue Plan Command (/issue:plan)

Overview

Unified planning command using issue-plan-agent that combines exploration and planning into a single closed-loop workflow.

Behavior:

  • Single solution per issue → auto-bind
  • Multiple solutions → return for user selection
  • Agent handles file generation

Usage

/issue:plan <issue-id>[,<issue-id>,...] [FLAGS]

# Examples
/issue:plan GH-123                    # Single issue
/issue:plan GH-123,GH-124,GH-125      # Batch (up to 3)
/issue:plan --all-pending             # All pending issues

# Flags
--batch-size <n>      Max issues per agent batch (default: 3)

Execution Process

Phase 1: Issue Loading
   ├─ Parse input (single, comma-separated, or --all-pending)
   ├─ Fetch issue metadata (ID, title, tags)
   ├─ Validate issues exist (create if needed)
   └─ Group by similarity (shared tags or title keywords, max 3 per batch)

Phase 2: Unified Explore + Plan (issue-plan-agent)
   ├─ Launch issue-plan-agent per batch
   ├─ Agent performs:
   │   ├─ ACE semantic search for each issue
   │   ├─ Codebase exploration (files, patterns, dependencies)
   │   ├─ Solution generation with task breakdown
   │   └─ Conflict detection across issues
   └─ Output: solution JSON per issue

Phase 3: Solution Registration & Binding
   ├─ Append solutions to solutions/{issue-id}.jsonl
   ├─ Single solution per issue → auto-bind
   ├─ Multiple candidates → AskUserQuestion to select
   └─ Update issues.jsonl with bound_solution_id

Phase 4: Summary
   ├─ Display bound solutions
   ├─ Show task counts per issue
   └─ Display next steps (/issue:queue)

Implementation

Phase 1: Issue Loading (ID + Title + Tags)

const batchSize = flags.batchSize || 3;
let issues = [];  // {id, title, tags}

if (flags.allPending) {
  // Get pending issues with metadata via CLI (JSON output)
  const result = Bash(`ccw issue list --status pending,registered --json`).trim();
  const parsed = result ? JSON.parse(result) : [];
  issues = parsed.map(i => ({ id: i.id, title: i.title || '', tags: i.tags || [] }));

  if (issues.length === 0) {
    console.log('No pending issues found.');
    return;
  }
  console.log(`Found ${issues.length} pending issues`);
} else {
  // Parse comma-separated issue IDs, fetch metadata
  const ids = userInput.includes(',')
    ? userInput.split(',').map(s => s.trim())
    : [userInput.trim()];

  for (const id of ids) {
    Bash(`ccw issue init ${id} --title "Issue ${id}" 2>/dev/null || true`);
    const info = Bash(`ccw issue status ${id} --json`).trim();
    const parsed = info ? JSON.parse(info) : {};
    issues.push({ id, title: parsed.title || '', tags: parsed.tags || [] });
  }
}

// Semantic grouping via Gemini CLI (max 4 issues per group)
async function groupBySimilarityGemini(issues) {
  const issueSummaries = issues.map(i => ({
    id: i.id, title: i.title, tags: i.tags
  }));

  const prompt = `
PURPOSE: Group similar issues by semantic similarity for batch processing; maximize within-group coherence; max 4 issues per group
TASK: • Analyze issue titles/tags semantically • Identify functional/architectural clusters • Assign each issue to one group
MODE: analysis
CONTEXT: Issue metadata only
EXPECTED: JSON with groups array, each containing max 4 issue_ids, theme, rationale
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md) | Each issue in exactly one group | Max 4 issues per group | Balance group sizes

INPUT:
${JSON.stringify(issueSummaries, null, 2)}

OUTPUT FORMAT:
{"groups":[{"group_id":1,"theme":"...","issue_ids":["..."],"rationale":"..."}],"ungrouped":[]}
`;

  const taskId = Bash({
    command: `ccw cli -p "${prompt}" --tool gemini --mode analysis`,
    run_in_background: true, timeout: 600000
  });
  const output = TaskOutput({ task_id: taskId, block: true });

  // Extract JSON from potential markdown code blocks
  function extractJsonFromMarkdown(text) {
    const jsonMatch = text.match(/```json\s*\n([\s\S]*?)\n```/) ||
                      text.match(/```\s*\n([\s\S]*?)\n```/);
    return jsonMatch ? jsonMatch[1] : text;
  }

  const result = JSON.parse(extractJsonFromMarkdown(output));
  return result.groups.map(g => g.issue_ids.map(id => issues.find(i => i.id === id)));
}

const batches = await groupBySimilarityGemini(issues);
console.log(`Processing ${issues.length} issues in ${batches.length} batch(es) (max 4 issues/agent)`);

TodoWrite({
  todos: batches.map((_, i) => ({
    content: `Plan batch ${i+1}`,
    status: 'pending',
    activeForm: `Planning batch ${i+1}`
  }))
});

Phase 2: Unified Explore + Plan (issue-plan-agent) - PARALLEL

Bash(`mkdir -p .workflow/issues/solutions`);
const pendingSelections = [];  // Collect multi-solution issues for user selection
const agentResults = [];       // Collect all agent results for conflict aggregation

// Build prompts for all batches
const agentTasks = batches.map((batch, batchIndex) => {
  const issueList = batch.map(i => `- ${i.id}: ${i.title}${i.tags.length ? ` [${i.tags.join(', ')}]` : ''}`).join('\n');
  const batchIds = batch.map(i => i.id);

  const issuePrompt = `
## Plan Issues

**Issues** (grouped by similarity):
${issueList}

**Project Root**: ${process.cwd()}

### Project Context (MANDATORY - Read Both Files First)
1. Read: .workflow/project-tech.json (technology stack, architecture, key components)
2. Read: .workflow/project-guidelines.json (user-defined constraints and conventions)

**CRITICAL**: All solution tasks MUST comply with constraints in project-guidelines.json

### Steps
1. Fetch issue: \`ccw issue status <id> --json\`
2. Load project context (project-tech.json + project-guidelines.json)
3. Explore codebase (ACE semantic search)
4. Plan solution with tasks (see issue-plan-agent.md for details)
5. Write solutions to JSONL, bind if single solution

### Generate Files
\`.workflow/issues/solutions/{issue-id}.jsonl\` - Solution with tasks (schema: cat .claude/workflows/cli-templates/schemas/solution-schema.json)

**Solution ID Format**: \`SOL-{issue-id}-{seq}\` (e.g., \`SOL-GH-123-1\`, \`SOL-ISS-20251229-1\`)

### Binding Rules
- **Single solution**: Auto-bind via \`ccw issue bind <id> --solution <file>\`
- **Multiple solutions**: Register only, return for user selection

### Return Summary
\`\`\`json
{
  "bound": [{ "issue_id": "...", "solution_id": "...", "task_count": N }],
  "pending_selection": [{ "issue_id": "...", "solutions": [{ "id": "...", "description": "...", "task_count": N }] }],
  "conflicts": [{
    "type": "file_conflict|api_conflict|data_conflict|dependency_conflict|architecture_conflict",
    "severity": "high|medium|low",
    "summary": "brief description",
    "recommended_resolution": "auto-resolution for low/medium",
    "resolution_options": [{ "strategy": "...", "rationale": "..." }]
  }]
}
\`\`\`
`;

  return { batchIndex, batchIds, issuePrompt, batch };
});

// Launch agents in parallel (max 10 concurrent)
const MAX_PARALLEL = 10;
for (let i = 0; i < agentTasks.length; i += MAX_PARALLEL) {
  const chunk = agentTasks.slice(i, i + MAX_PARALLEL);
  const taskIds = [];

  // Launch chunk in parallel
  for (const { batchIndex, batchIds, issuePrompt, batch } of chunk) {
    updateTodo(`Plan batch ${batchIndex + 1}`, 'in_progress');
    const taskId = Task(
      subagent_type="issue-plan-agent",
      run_in_background=true,
      description=`Explore & plan ${batch.length} issues: ${batchIds.join(', ')}`,
      prompt=issuePrompt
    );
    taskIds.push({ taskId, batchIndex });
  }

  console.log(`Launched ${taskIds.length} agents (batch ${i/MAX_PARALLEL + 1}/${Math.ceil(agentTasks.length/MAX_PARALLEL)})...`);

  // Collect results from this chunk
  for (const { taskId, batchIndex } of taskIds) {
    const result = TaskOutput(task_id=taskId, block=true);

    // Extract JSON from potential markdown code blocks (agent may wrap in ```json...```)
    const jsonText = extractJsonFromMarkdown(result);
    let summary;
    try {
      summary = JSON.parse(jsonText);
    } catch (e) {
      console.log(`⚠ Batch ${batchIndex + 1}: Failed to parse agent result, skipping`);
      updateTodo(`Plan batch ${batchIndex + 1}`, 'completed');
      continue;
    }
    agentResults.push(summary);  // Store for Phase 3 conflict aggregation

    for (const item of summary.bound || []) {
      console.log(`✓ ${item.issue_id}: ${item.solution_id} (${item.task_count} tasks)`);
    }
    // Collect and notify pending selections
    for (const pending of summary.pending_selection || []) {
      console.log(`⏳ ${pending.issue_id}: ${pending.solutions.length} solutions → awaiting selection`);
      pendingSelections.push(pending);
    }
    if (summary.conflicts?.length > 0) {
      console.log(`⚠ Conflicts: ${summary.conflicts.length} detected (will resolve in Phase 3)`);
    }
    updateTodo(`Plan batch ${batchIndex + 1}`, 'completed');
  }
}

Phase 3: Conflict Resolution & Solution Selection

Conflict Handling:

  • Collect conflicts from all agent results
  • Low/Medium severity → auto-resolve with recommended_resolution
  • High severity → use AskUserQuestion to let user choose resolution

Multi-Solution Selection:

  • If pending_selection contains issues with multiple solutions:
    • Use AskUserQuestion to present options (solution ID + task count + description)
    • Extract selected solution ID from user response
    • Verify solution file exists, recover from payload if missing
    • Bind selected solution via ccw issue bind <issue-id> <solution-id>

Phase 4: Summary

// Count planned issues via CLI
const plannedIds = Bash(`ccw issue list --status planned --ids`).trim();
const plannedCount = plannedIds ? plannedIds.split('\n').length : 0;

console.log(`
## Done: ${issues.length} issues → ${plannedCount} planned

Next: \`/issue:queue\` → \`/issue:execute\`
`);

Error Handling

Error Resolution
Issue not found Auto-create in issues.jsonl
ACE search fails Agent falls back to ripgrep
No solutions generated Display error, suggest manual planning
User cancels selection Skip issue, continue with others
File conflicts Agent detects and suggests resolution order

Quality Checklist

Before completing, verify:

  • All input issues have solutions in solutions/{issue-id}.jsonl
  • Single solution issues are auto-bound (bound_solution_id set)
  • Multi-solution issues returned in pending_selection for user choice
  • Each solution has executable tasks with modification_points
  • Task acceptance criteria are quantified (not vague)
  • Conflicts detected and reported (if multiple issues touch same files)
  • Issue status updated to planned after binding
  • /issue:queue - Form execution queue from bound solutions
  • /issue:execute - Execute queue with codex
  • ccw issue list - List all issues
  • ccw issue status - View issue and solution details