Files
Claude-Code-Workflow/codex-lens/src/codexlens/cli/model_manager.py
2025-12-22 20:17:38 +08:00

312 lines
9.4 KiB
Python

"""Model Manager - Manage fastembed models for semantic search."""
import json
import os
import shutil
from pathlib import Path
from typing import Dict, List, Optional
try:
from fastembed import TextEmbedding
FASTEMBED_AVAILABLE = True
except ImportError:
FASTEMBED_AVAILABLE = False
# Model profiles with metadata
# Note: 768d is max recommended dimension for optimal performance/quality balance
# 1024d models are available but not recommended due to higher resource usage
MODEL_PROFILES = {
"fast": {
"model_name": "BAAI/bge-small-en-v1.5",
"dimensions": 384,
"size_mb": 80,
"description": "Fast, lightweight, English-optimized",
"use_case": "Quick prototyping, resource-constrained environments",
"recommended": True,
},
"base": {
"model_name": "BAAI/bge-base-en-v1.5",
"dimensions": 768,
"size_mb": 220,
"description": "General purpose, good balance of speed and quality",
"use_case": "General text search, documentation",
"recommended": True,
},
"code": {
"model_name": "jinaai/jina-embeddings-v2-base-code",
"dimensions": 768,
"size_mb": 150,
"description": "Code-optimized, best for programming languages",
"use_case": "Open source projects, code semantic search",
"recommended": True,
},
"minilm": {
"model_name": "sentence-transformers/all-MiniLM-L6-v2",
"dimensions": 384,
"size_mb": 90,
"description": "Popular lightweight model, good quality",
"use_case": "General purpose, low resource environments",
"recommended": True,
},
"multilingual": {
"model_name": "intfloat/multilingual-e5-large",
"dimensions": 1024,
"size_mb": 1000,
"description": "Multilingual + code support (high resource usage)",
"use_case": "Enterprise multilingual projects",
"recommended": False, # 1024d not recommended
},
"balanced": {
"model_name": "mixedbread-ai/mxbai-embed-large-v1",
"dimensions": 1024,
"size_mb": 600,
"description": "High accuracy, general purpose (high resource usage)",
"use_case": "High-quality semantic search, balanced performance",
"recommended": False, # 1024d not recommended
},
}
def get_cache_dir() -> Path:
"""Get fastembed cache directory.
Returns:
Path to cache directory (usually ~/.cache/fastembed or %LOCALAPPDATA%\\Temp\\fastembed_cache)
"""
# Check HF_HOME environment variable first
if "HF_HOME" in os.environ:
return Path(os.environ["HF_HOME"])
# Default cache locations
if os.name == "nt": # Windows
cache_dir = Path(os.environ.get("LOCALAPPDATA", Path.home() / "AppData" / "Local")) / "Temp" / "fastembed_cache"
else: # Unix-like
cache_dir = Path.home() / ".cache" / "fastembed"
return cache_dir
def list_models() -> Dict[str, any]:
"""List available model profiles and their installation status.
Returns:
Dictionary with model profiles, installed status, and cache info
"""
if not FASTEMBED_AVAILABLE:
return {
"success": False,
"error": "fastembed not installed. Install with: pip install codexlens[semantic]",
}
cache_dir = get_cache_dir()
cache_exists = cache_dir.exists()
models = []
for profile, info in MODEL_PROFILES.items():
model_name = info["model_name"]
# Check if model is cached
installed = False
cache_size_mb = 0
if cache_exists:
# Check for model directory in cache
model_cache_path = cache_dir / f"models--{model_name.replace('/', '--')}"
if model_cache_path.exists():
installed = True
# Calculate cache size
total_size = sum(
f.stat().st_size
for f in model_cache_path.rglob("*")
if f.is_file()
)
cache_size_mb = round(total_size / (1024 * 1024), 1)
models.append({
"profile": profile,
"model_name": model_name,
"dimensions": info["dimensions"],
"estimated_size_mb": info["size_mb"],
"actual_size_mb": cache_size_mb if installed else None,
"description": info["description"],
"use_case": info["use_case"],
"installed": installed,
})
return {
"success": True,
"result": {
"models": models,
"cache_dir": str(cache_dir),
"cache_exists": cache_exists,
},
}
def download_model(profile: str, progress_callback: Optional[callable] = None) -> Dict[str, any]:
"""Download a model by profile name.
Args:
profile: Model profile name (fast, code, multilingual, balanced)
progress_callback: Optional callback function to report progress
Returns:
Result dictionary with success status
"""
if not FASTEMBED_AVAILABLE:
return {
"success": False,
"error": "fastembed not installed. Install with: pip install codexlens[semantic]",
}
if profile not in MODEL_PROFILES:
return {
"success": False,
"error": f"Unknown profile: {profile}. Available: {', '.join(MODEL_PROFILES.keys())}",
}
model_name = MODEL_PROFILES[profile]["model_name"]
try:
# Download model by instantiating TextEmbedding
# This will automatically download to cache if not present
if progress_callback:
progress_callback(f"Downloading {model_name}...")
embedder = TextEmbedding(model_name=model_name)
if progress_callback:
progress_callback(f"Model {model_name} downloaded successfully")
# Get cache info
cache_dir = get_cache_dir()
model_cache_path = cache_dir / f"models--{model_name.replace('/', '--')}"
cache_size = 0
if model_cache_path.exists():
total_size = sum(
f.stat().st_size
for f in model_cache_path.rglob("*")
if f.is_file()
)
cache_size = round(total_size / (1024 * 1024), 1)
return {
"success": True,
"result": {
"profile": profile,
"model_name": model_name,
"cache_size_mb": cache_size,
"cache_path": str(model_cache_path),
},
}
except Exception as e:
return {
"success": False,
"error": f"Failed to download model: {str(e)}",
}
def delete_model(profile: str) -> Dict[str, any]:
"""Delete a downloaded model from cache.
Args:
profile: Model profile name to delete
Returns:
Result dictionary with success status
"""
if profile not in MODEL_PROFILES:
return {
"success": False,
"error": f"Unknown profile: {profile}. Available: {', '.join(MODEL_PROFILES.keys())}",
}
model_name = MODEL_PROFILES[profile]["model_name"]
cache_dir = get_cache_dir()
model_cache_path = cache_dir / f"models--{model_name.replace('/', '--')}"
if not model_cache_path.exists():
return {
"success": False,
"error": f"Model {profile} ({model_name}) is not installed",
}
try:
# Calculate size before deletion
total_size = sum(
f.stat().st_size
for f in model_cache_path.rglob("*")
if f.is_file()
)
size_mb = round(total_size / (1024 * 1024), 1)
# Delete model directory
shutil.rmtree(model_cache_path)
return {
"success": True,
"result": {
"profile": profile,
"model_name": model_name,
"deleted_size_mb": size_mb,
"cache_path": str(model_cache_path),
},
}
except Exception as e:
return {
"success": False,
"error": f"Failed to delete model: {str(e)}",
}
def get_model_info(profile: str) -> Dict[str, any]:
"""Get detailed information about a model profile.
Args:
profile: Model profile name
Returns:
Result dictionary with model information
"""
if profile not in MODEL_PROFILES:
return {
"success": False,
"error": f"Unknown profile: {profile}. Available: {', '.join(MODEL_PROFILES.keys())}",
}
info = MODEL_PROFILES[profile]
model_name = info["model_name"]
# Check installation status
cache_dir = get_cache_dir()
model_cache_path = cache_dir / f"models--{model_name.replace('/', '--')}"
installed = model_cache_path.exists()
cache_size_mb = None
if installed:
total_size = sum(
f.stat().st_size
for f in model_cache_path.rglob("*")
if f.is_file()
)
cache_size_mb = round(total_size / (1024 * 1024), 1)
return {
"success": True,
"result": {
"profile": profile,
"model_name": model_name,
"dimensions": info["dimensions"],
"estimated_size_mb": info["size_mb"],
"actual_size_mb": cache_size_mb,
"description": info["description"],
"use_case": info["use_case"],
"installed": installed,
"cache_path": str(model_cache_path) if installed else None,
},
}