mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-05 01:50:27 +08:00
- Implement `inspect_llm_summaries.py` to display LLM-generated summaries from the semantic_chunks table in the database. - Create `show_llm_analysis.py` to demonstrate LLM analysis of misleading code examples, highlighting discrepancies between comments and actual functionality. - Develop `test_misleading_comments.py` to compare pure vector search with LLM-enhanced search, focusing on the impact of misleading or missing comments on search results. - Introduce `test_llm_enhanced_search.py` to provide a test suite for evaluating the effectiveness of LLM-enhanced vector search against pure vector search. - Ensure all new scripts are integrated with the existing codebase and follow the established coding standards.
466 lines
15 KiB
Python
466 lines
15 KiB
Python
#!/usr/bin/env python3
|
|
"""Standalone script to compare pure vector vs LLM-enhanced semantic search.
|
|
|
|
Usage:
|
|
python compare_search_methods.py [--tool gemini|qwen] [--skip-llm]
|
|
|
|
This script:
|
|
1. Creates a test dataset with sample code
|
|
2. Tests pure vector search (code → fastembed → search)
|
|
3. Tests LLM-enhanced search (code → LLM summary → fastembed → search)
|
|
4. Compares results across natural language queries
|
|
"""
|
|
|
|
import argparse
|
|
import sqlite3
|
|
import sys
|
|
import tempfile
|
|
import time
|
|
from pathlib import Path
|
|
from typing import Dict, List, Tuple
|
|
|
|
# Check dependencies
|
|
try:
|
|
from codexlens.semantic import SEMANTIC_AVAILABLE
|
|
from codexlens.semantic.embedder import Embedder
|
|
from codexlens.semantic.vector_store import VectorStore
|
|
from codexlens.semantic.chunker import Chunker, ChunkConfig
|
|
from codexlens.semantic.llm_enhancer import (
|
|
LLMEnhancer,
|
|
LLMConfig,
|
|
FileData,
|
|
EnhancedSemanticIndexer,
|
|
)
|
|
from codexlens.storage.dir_index import DirIndexStore
|
|
from codexlens.search.hybrid_search import HybridSearchEngine
|
|
except ImportError as e:
|
|
print(f"Error: Missing dependencies - {e}")
|
|
print("Install with: pip install codexlens[semantic]")
|
|
sys.exit(1)
|
|
|
|
if not SEMANTIC_AVAILABLE:
|
|
print("Error: Semantic search dependencies not available")
|
|
print("Install with: pip install codexlens[semantic]")
|
|
sys.exit(1)
|
|
|
|
|
|
# Test dataset with realistic code samples
|
|
TEST_DATASET = {
|
|
"auth/password_hasher.py": '''"""Password hashing utilities using bcrypt."""
|
|
import bcrypt
|
|
|
|
def hash_password(password: str, salt_rounds: int = 12) -> str:
|
|
"""Hash a password using bcrypt with specified salt rounds."""
|
|
salt = bcrypt.gensalt(rounds=salt_rounds)
|
|
hashed = bcrypt.hashpw(password.encode('utf-8'), salt)
|
|
return hashed.decode('utf-8')
|
|
|
|
def verify_password(password: str, hashed: str) -> bool:
|
|
"""Verify a password against its hash."""
|
|
return bcrypt.checkpw(password.encode('utf-8'), hashed.encode('utf-8'))
|
|
''',
|
|
|
|
"auth/jwt_handler.py": '''"""JWT token generation and validation."""
|
|
import jwt
|
|
from datetime import datetime, timedelta
|
|
|
|
SECRET_KEY = "your-secret-key"
|
|
|
|
def create_token(user_id: int, expires_in: int = 3600) -> str:
|
|
"""Generate a JWT access token for user authentication."""
|
|
payload = {
|
|
'user_id': user_id,
|
|
'exp': datetime.utcnow() + timedelta(seconds=expires_in),
|
|
'iat': datetime.utcnow()
|
|
}
|
|
return jwt.encode(payload, SECRET_KEY, algorithm='HS256')
|
|
|
|
def decode_token(token: str) -> dict:
|
|
"""Validate and decode JWT token."""
|
|
try:
|
|
return jwt.decode(token, SECRET_KEY, algorithms=['HS256'])
|
|
except jwt.ExpiredSignatureError:
|
|
return None
|
|
''',
|
|
|
|
"api/user_endpoints.py": '''"""REST API endpoints for user management."""
|
|
from flask import Flask, request, jsonify
|
|
|
|
app = Flask(__name__)
|
|
|
|
@app.route('/api/users', methods=['POST'])
|
|
def create_user():
|
|
"""Create a new user account with email and password."""
|
|
data = request.get_json()
|
|
if not data.get('email') or not data.get('password'):
|
|
return jsonify({'error': 'Email and password required'}), 400
|
|
user_id = 12345 # Database insert
|
|
return jsonify({'user_id': user_id, 'success': True}), 201
|
|
|
|
@app.route('/api/users/<int:user_id>', methods=['GET'])
|
|
def get_user(user_id: int):
|
|
"""Retrieve user profile information by user ID."""
|
|
user = {
|
|
'id': user_id,
|
|
'email': 'user@example.com',
|
|
'name': 'John Doe'
|
|
}
|
|
return jsonify(user), 200
|
|
''',
|
|
|
|
"utils/validation.py": '''"""Input validation utilities."""
|
|
import re
|
|
|
|
def validate_email(email: str) -> bool:
|
|
"""Check if email address format is valid using regex."""
|
|
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
|
|
return bool(re.match(pattern, email))
|
|
|
|
def sanitize_input(text: str, max_length: int = 255) -> str:
|
|
"""Clean user input by removing special characters."""
|
|
text = re.sub(r'[<>\"\'&]', '', text)
|
|
return text.strip()[:max_length]
|
|
|
|
def validate_password_strength(password: str) -> tuple:
|
|
"""Validate password meets security requirements."""
|
|
if len(password) < 8:
|
|
return False, "Password must be at least 8 characters"
|
|
if not re.search(r'[A-Z]', password):
|
|
return False, "Must contain uppercase letter"
|
|
return True, None
|
|
''',
|
|
|
|
"database/connection.py": '''"""Database connection pooling."""
|
|
import psycopg2
|
|
from psycopg2 import pool
|
|
from contextlib import contextmanager
|
|
|
|
class DatabasePool:
|
|
"""PostgreSQL connection pool manager."""
|
|
|
|
def __init__(self, min_conn: int = 1, max_conn: int = 10):
|
|
"""Initialize database connection pool."""
|
|
self.pool = psycopg2.pool.SimpleConnectionPool(
|
|
min_conn, max_conn,
|
|
user='dbuser', host='localhost', database='myapp'
|
|
)
|
|
|
|
@contextmanager
|
|
def get_connection(self):
|
|
"""Get a connection from pool as context manager."""
|
|
conn = self.pool.getconn()
|
|
try:
|
|
yield conn
|
|
conn.commit()
|
|
finally:
|
|
self.pool.putconn(conn)
|
|
''',
|
|
}
|
|
|
|
|
|
# Natural language test queries
|
|
TEST_QUERIES = [
|
|
("How do I securely hash passwords?", "auth/password_hasher.py"),
|
|
("Generate JWT token for authentication", "auth/jwt_handler.py"),
|
|
("Create new user account via API", "api/user_endpoints.py"),
|
|
("Validate email address format", "utils/validation.py"),
|
|
("Connect to PostgreSQL database", "database/connection.py"),
|
|
]
|
|
|
|
|
|
def create_test_database(db_path: Path) -> None:
|
|
"""Create and populate test database."""
|
|
store = DirIndexStore(db_path)
|
|
store.initialize()
|
|
|
|
with store._get_connection() as conn:
|
|
for path, content in TEST_DATASET.items():
|
|
name = path.split('/')[-1]
|
|
conn.execute(
|
|
"""INSERT INTO files (name, full_path, content, language, mtime)
|
|
VALUES (?, ?, ?, ?, ?)""",
|
|
(name, path, content, "python", 0.0)
|
|
)
|
|
conn.commit()
|
|
|
|
store.close()
|
|
|
|
|
|
def test_pure_vector_search(db_path: Path) -> Dict:
|
|
"""Test pure vector search (raw code embeddings)."""
|
|
print("\n" + "="*70)
|
|
print("PURE VECTOR SEARCH (Code → fastembed)")
|
|
print("="*70)
|
|
|
|
start_time = time.time()
|
|
|
|
# Generate pure vector embeddings
|
|
embedder = Embedder(profile="code")
|
|
vector_store = VectorStore(db_path)
|
|
chunker = Chunker(config=ChunkConfig(max_chunk_size=2000))
|
|
|
|
with sqlite3.connect(db_path) as conn:
|
|
conn.row_factory = sqlite3.Row
|
|
rows = conn.execute("SELECT full_path, content FROM files").fetchall()
|
|
|
|
chunk_count = 0
|
|
for row in rows:
|
|
chunks = chunker.chunk_sliding_window(
|
|
row["content"],
|
|
file_path=row["full_path"],
|
|
language="python"
|
|
)
|
|
for chunk in chunks:
|
|
chunk.embedding = embedder.embed_single(chunk.content)
|
|
chunk.metadata["strategy"] = "pure_vector"
|
|
if chunks:
|
|
vector_store.add_chunks(chunks, row["full_path"])
|
|
chunk_count += len(chunks)
|
|
|
|
setup_time = time.time() - start_time
|
|
print(f"Setup: {len(rows)} files, {chunk_count} chunks in {setup_time:.1f}s")
|
|
|
|
# Test queries
|
|
engine = HybridSearchEngine()
|
|
results = {}
|
|
|
|
print(f"\n{'Query':<45} {'Top Result':<30} {'Score':<8}")
|
|
print("-" * 70)
|
|
|
|
for query, expected_file in TEST_QUERIES:
|
|
search_results = engine.search(
|
|
db_path,
|
|
query,
|
|
limit=3,
|
|
enable_vector=True,
|
|
pure_vector=True,
|
|
)
|
|
|
|
top_file = search_results[0].path if search_results else "No results"
|
|
top_score = search_results[0].score if search_results else 0.0
|
|
found = expected_file in [r.path for r in search_results]
|
|
rank = None
|
|
if found:
|
|
for i, r in enumerate(search_results):
|
|
if r.path == expected_file:
|
|
rank = i + 1
|
|
break
|
|
|
|
status = "[OK]" if found and rank == 1 else ("[~]" if found else "[X]")
|
|
display_query = query[:42] + "..." if len(query) > 45 else query
|
|
display_file = top_file.split('/')[-1] if '/' in top_file else top_file
|
|
|
|
print(f"{status} {display_query:<43} {display_file:<30} {top_score:.3f}")
|
|
|
|
results[query] = {
|
|
"found": found,
|
|
"rank": rank,
|
|
"top_file": top_file,
|
|
"score": top_score,
|
|
}
|
|
|
|
return results
|
|
|
|
|
|
def test_llm_enhanced_search(db_path: Path, llm_tool: str = "gemini") -> Dict:
|
|
"""Test LLM-enhanced search (LLM summaries → fastembed)."""
|
|
print("\n" + "="*70)
|
|
print(f"LLM-ENHANCED SEARCH (Code → {llm_tool.upper()} → fastembed)")
|
|
print("="*70)
|
|
|
|
# Check CCW availability
|
|
llm_config = LLMConfig(enabled=True, tool=llm_tool, batch_size=2)
|
|
enhancer = LLMEnhancer(llm_config)
|
|
|
|
if not enhancer.check_available():
|
|
print("[X] CCW CLI not available - skipping LLM-enhanced test")
|
|
print(" Install CCW: npm install -g ccw")
|
|
return {}
|
|
|
|
start_time = time.time()
|
|
|
|
# Generate LLM-enhanced embeddings
|
|
embedder = Embedder(profile="code")
|
|
vector_store = VectorStore(db_path)
|
|
indexer = EnhancedSemanticIndexer(enhancer, embedder, vector_store)
|
|
|
|
# Prepare file data
|
|
file_data_list = [
|
|
FileData(path=path, content=content, language="python")
|
|
for path, content in TEST_DATASET.items()
|
|
]
|
|
|
|
# Index with LLM enhancement
|
|
print(f"Generating LLM summaries for {len(file_data_list)} files...")
|
|
indexed = indexer.index_files(file_data_list)
|
|
setup_time = time.time() - start_time
|
|
|
|
print(f"Setup: {indexed}/{len(file_data_list)} files indexed in {setup_time:.1f}s")
|
|
|
|
# Test queries
|
|
engine = HybridSearchEngine()
|
|
results = {}
|
|
|
|
print(f"\n{'Query':<45} {'Top Result':<30} {'Score':<8}")
|
|
print("-" * 70)
|
|
|
|
for query, expected_file in TEST_QUERIES:
|
|
search_results = engine.search(
|
|
db_path,
|
|
query,
|
|
limit=3,
|
|
enable_vector=True,
|
|
pure_vector=True,
|
|
)
|
|
|
|
top_file = search_results[0].path if search_results else "No results"
|
|
top_score = search_results[0].score if search_results else 0.0
|
|
found = expected_file in [r.path for r in search_results]
|
|
rank = None
|
|
if found:
|
|
for i, r in enumerate(search_results):
|
|
if r.path == expected_file:
|
|
rank = i + 1
|
|
break
|
|
|
|
status = "[OK]" if found and rank == 1 else ("[~]" if found else "[X]")
|
|
display_query = query[:42] + "..." if len(query) > 45 else query
|
|
display_file = top_file.split('/')[-1] if '/' in top_file else top_file
|
|
|
|
print(f"{status} {display_query:<43} {display_file:<30} {top_score:.3f}")
|
|
|
|
results[query] = {
|
|
"found": found,
|
|
"rank": rank,
|
|
"top_file": top_file,
|
|
"score": top_score,
|
|
}
|
|
|
|
return results
|
|
|
|
|
|
def compare_results(pure_results: Dict, llm_results: Dict) -> None:
|
|
"""Compare and analyze results from both approaches."""
|
|
print("\n" + "="*70)
|
|
print("COMPARISON SUMMARY")
|
|
print("="*70)
|
|
|
|
if not llm_results:
|
|
print("Cannot compare - LLM-enhanced test was skipped")
|
|
return
|
|
|
|
pure_score = 0
|
|
llm_score = 0
|
|
|
|
print(f"\n{'Query':<45} {'Pure':<10} {'LLM':<10}")
|
|
print("-" * 70)
|
|
|
|
for query, expected_file in TEST_QUERIES:
|
|
pure_res = pure_results.get(query, {})
|
|
llm_res = llm_results.get(query, {})
|
|
|
|
pure_status = f"[OK] Rank {pure_res.get('rank', '?')}" if pure_res.get('found') else "[X] Miss"
|
|
llm_status = f"[OK] Rank {llm_res.get('rank', '?')}" if llm_res.get('found') else "[X] Miss"
|
|
|
|
# Scoring: Rank 1 = 3 points, Rank 2 = 2 points, Rank 3 = 1 point
|
|
if pure_res.get('found') and pure_res.get('rank'):
|
|
pure_score += max(0, 4 - pure_res['rank'])
|
|
if llm_res.get('found') and llm_res.get('rank'):
|
|
llm_score += max(0, 4 - llm_res['rank'])
|
|
|
|
display_query = query[:42] + "..." if len(query) > 45 else query
|
|
print(f"{display_query:<45} {pure_status:<10} {llm_status:<10}")
|
|
|
|
print("-" * 70)
|
|
print(f"{'TOTAL SCORE':<45} {pure_score:<10} {llm_score:<10}")
|
|
print("="*70)
|
|
|
|
# Analysis
|
|
print("\nANALYSIS:")
|
|
if llm_score > pure_score:
|
|
improvement = ((llm_score - pure_score) / max(pure_score, 1)) * 100
|
|
print(f"[OK] LLM enhancement improves results by {improvement:.1f}%")
|
|
print(" Natural language summaries match queries better than raw code")
|
|
elif pure_score > llm_score:
|
|
degradation = ((pure_score - llm_score) / max(pure_score, 1)) * 100
|
|
print(f"[X] Pure vector performed {degradation:.1f}% better")
|
|
print(" LLM summaries may be too generic or missing key details")
|
|
else:
|
|
print("= Both approaches performed equally on this test set")
|
|
|
|
print("\nKEY FINDINGS:")
|
|
print("- Pure Vector: Direct code embeddings, fast but may miss semantic intent")
|
|
print("- LLM Enhanced: Natural language summaries, better for human-like queries")
|
|
print("- Best Use: Combine both - LLM for natural language, vector for code patterns")
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description="Compare pure vector vs LLM-enhanced semantic search"
|
|
)
|
|
parser.add_argument(
|
|
"--tool",
|
|
choices=["gemini", "qwen"],
|
|
default="gemini",
|
|
help="LLM tool to use for enhancement (default: gemini)"
|
|
)
|
|
parser.add_argument(
|
|
"--skip-llm",
|
|
action="store_true",
|
|
help="Skip LLM-enhanced test (only run pure vector)"
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
print("\n" + "="*70)
|
|
print("SEMANTIC SEARCH COMPARISON TEST")
|
|
print("Pure Vector vs LLM-Enhanced Vector Search")
|
|
print("="*70)
|
|
|
|
# Create test database
|
|
with tempfile.NamedTemporaryFile(suffix=".db", delete=False) as f:
|
|
db_path = Path(f.name)
|
|
|
|
try:
|
|
print(f"\nTest dataset: {len(TEST_DATASET)} Python files")
|
|
print(f"Test queries: {len(TEST_QUERIES)} natural language questions")
|
|
|
|
create_test_database(db_path)
|
|
|
|
# Test pure vector search
|
|
pure_results = test_pure_vector_search(db_path)
|
|
|
|
# Test LLM-enhanced search
|
|
if not args.skip_llm:
|
|
# Clear semantic_chunks table for LLM test
|
|
with sqlite3.connect(db_path) as conn:
|
|
conn.execute("DELETE FROM semantic_chunks")
|
|
conn.commit()
|
|
|
|
llm_results = test_llm_enhanced_search(db_path, args.tool)
|
|
else:
|
|
llm_results = {}
|
|
print("\n[X] LLM-enhanced test skipped (--skip-llm flag)")
|
|
|
|
# Compare results
|
|
compare_results(pure_results, llm_results)
|
|
|
|
finally:
|
|
# Cleanup - ensure all connections are closed
|
|
try:
|
|
import gc
|
|
gc.collect() # Force garbage collection to close any lingering connections
|
|
time.sleep(0.1) # Small delay for Windows to release file handle
|
|
if db_path.exists():
|
|
db_path.unlink()
|
|
except PermissionError:
|
|
print(f"\nWarning: Could not delete temporary database: {db_path}")
|
|
print("It will be cleaned up on next system restart.")
|
|
|
|
print("\n" + "="*70)
|
|
print("Test completed successfully!")
|
|
print("="*70)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|