mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-15 02:42:45 +08:00
- Added Phase 6: Fix Discovery & Batching with intelligent grouping and batching of findings. - Added Phase 7: Fix Parallel Planning to launch planning agents for concurrent analysis and aggregation of partial plans. - Added Phase 8: Fix Execution for stage-based execution of fixes with conservative test verification. - Added Phase 9: Fix Completion to aggregate results, generate summary reports, and handle session completion. - Introduced new frontend components: ResizeHandle for draggable resizing of sidebar panels and useResizablePanel hook for managing panel sizes with localStorage persistence. - Added PowerShell script for checking TypeScript errors in source code, excluding test files.
6.6 KiB
6.6 KiB
Phase 7: Fix Parallel Planning
Source:
commands/workflow/review-cycle-fix.mdPhase 2
Overview
Launch N planning agents (up to MAX_PARALLEL=10) to analyze finding batches concurrently. Each agent outputs a partial plan. Orchestrator aggregates partial plans into unified fix-plan.json.
Execution Strategy Determination
Strategy Types:
| Strategy | When to Use | Stage Structure |
|---|---|---|
| Parallel | All groups independent, different files | Single stage, all groups in parallel |
| Serial | Strong dependencies, shared resources | Multiple stages, one group per stage |
| Hybrid | Mixed dependencies | Multiple stages, parallel within stages |
Dependency Detection:
- Shared file modifications
- Utility creation + usage patterns
- Test dependency chains
- Risk level clustering (high-risk groups isolated)
Phase 2: Parallel Planning Coordination (Orchestrator)
const MAX_PARALLEL = 10;
const partialPlans = [];
// Process batches in chunks of MAX_PARALLEL
for (let i = 0; i < batches.length; i += MAX_PARALLEL) {
const chunk = batches.slice(i, i + MAX_PARALLEL);
const taskIds = [];
// Launch agents in parallel (run_in_background=true)
for (const batch of chunk) {
const taskId = Task({
subagent_type: "cli-planning-agent",
run_in_background: true,
description: `Plan batch ${batch.batch_id}: ${batch.findings.length} findings`,
prompt: planningPrompt(batch) // See Planning Agent template below
});
taskIds.push({ taskId, batch });
}
console.log(`Launched ${taskIds.length} planning agents...`);
// Collect results from this chunk (blocking)
for (const { taskId, batch } of taskIds) {
const result = TaskOutput({ task_id: taskId, block: true });
const partialPlan = JSON.parse(Read(`${sessionDir}/partial-plan-${batch.batch_id}.json`));
partialPlans.push(partialPlan);
updateTodo(`Batch ${batch.batch_id}`, 'completed');
}
}
// Aggregate partial plans → fix-plan.json
let groupCounter = 1;
const groupIdMap = new Map();
for (const partial of partialPlans) {
for (const group of partial.groups) {
const newGroupId = `G${groupCounter}`;
groupIdMap.set(`${partial.batch_id}:${group.group_id}`, newGroupId);
aggregatedPlan.groups.push({ ...group, group_id: newGroupId, progress_file: `fix-progress-${groupCounter}.json` });
groupCounter++;
}
}
// Merge timelines, resolve cross-batch conflicts (shared files → serialize)
let stageCounter = 1;
for (const partial of partialPlans) {
for (const stage of partial.timeline) {
aggregatedPlan.timeline.push({
...stage, stage_id: stageCounter,
groups: stage.groups.map(gid => groupIdMap.get(`${partial.batch_id}:${gid}`))
});
stageCounter++;
}
}
// Write aggregated plan + initialize progress files
Write(`${sessionDir}/fix-plan.json`, JSON.stringify(aggregatedPlan, null, 2));
for (let i = 1; i <= aggregatedPlan.groups.length; i++) {
Write(`${sessionDir}/fix-progress-${i}.json`, JSON.stringify(initProgressFile(aggregatedPlan.groups[i-1]), null, 2));
}
Planning Agent Template (Batch Mode)
Task({
subagent_type: "cli-planning-agent",
run_in_background: true,
description: `Plan batch ${batch.batch_id}: ${batch.findings.length} findings`,
prompt: `
## Task Objective
Analyze code review findings in batch ${batch.batch_id} and generate **partial** execution plan.
## Input Data
Review Session: ${reviewId}
Fix Session ID: ${fixSessionId}
Batch ID: ${batch.batch_id}
Batch Findings: ${batch.findings.length}
Findings:
${JSON.stringify(batch.findings, null, 2)}
Project Context:
- Structure: ${projectStructure}
- Test Framework: ${testFramework}
- Git Status: ${gitStatus}
## Output Requirements
### 1. partial-plan-${batch.batch_id}.json
Generate partial execution plan with structure:
{
"batch_id": ${batch.batch_id},
"groups": [...], // Groups created from batch findings (use local IDs: G1, G2, ...)
"timeline": [...], // Local timeline for this batch only
"metadata": {
"findings_count": ${batch.findings.length},
"groups_count": N,
"created_at": "ISO-8601-timestamp"
}
}
**Key Generation Rules**:
- **Groups**: Create groups with local IDs (G1, G2, ...) using intelligent grouping (file+dimension+root cause)
- **Timeline**: Define stages for this batch only (local dependencies within batch)
- **Progress Files**: DO NOT generate fix-progress-*.json here (orchestrator handles after aggregation)
## Analysis Requirements
### Intelligent Grouping Strategy
Group findings using these criteria (in priority order):
1. **File Proximity**: Findings in same file or related files
2. **Dimension Affinity**: Same dimension (security, performance, etc.)
3. **Root Cause Similarity**: Similar underlying issues
4. **Fix Approach Commonality**: Can be fixed with similar approach
**Grouping Guidelines**:
- Optimal group size: 2-5 findings per group
- Avoid cross-cutting concerns in same group
- Consider test isolation (different test suites → different groups)
- Balance workload across groups for parallel execution
### Execution Strategy Determination (Local Only)
**Parallel Mode**: Use when groups are independent, no shared files
**Serial Mode**: Use when groups have dependencies or shared resources
**Hybrid Mode**: Use for mixed dependency graphs (recommended for most cases)
**Dependency Analysis**:
- Identify shared files between groups
- Detect test dependency chains
- Evaluate risk of concurrent modifications
### Risk Assessment
For each group, evaluate:
- **Complexity**: Based on code structure, file size, existing tests
- **Impact Scope**: Number of files affected, API surface changes
- **Rollback Feasibility**: Ease of reverting changes if tests fail
### Test Strategy
For each group, determine:
- **Test Pattern**: Glob pattern matching affected tests
- **Pass Criteria**: All tests must pass (100% pass rate)
- **Test Command**: Infer from project (package.json, pytest.ini, etc.)
## Output Files
Write to ${sessionDir}:
- ./partial-plan-${batch.batch_id}.json
## Quality Checklist
Before finalizing outputs:
- All batch findings assigned to exactly one group
- Group dependencies (within batch) correctly identified
- Timeline stages respect local dependencies
- Test patterns are valid and specific
- Risk assessments are realistic
`
})
Output
- Files:
partial-plan-{batch-id}.json(per agent),fix-plan.json(aggregated),fix-progress-*.json(initialized) - TaskUpdate: Mark Phase 7 completed, Phase 8 in_progress
Next Phase
Return to orchestrator, then auto-continue to Phase 8: Fix Execution.