mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-09 02:24:11 +08:00
- Introduced `ccw-mcp` command for running CCW tools as an MCP server. - Updated `package.json` to include new MCP dependencies and scripts. - Enhanced CLI with new options for `codex_lens` tool. - Implemented MCP server logic to expose CCW tools via Model Context Protocol. - Added new tools and updated existing ones for better functionality and documentation. - Created quick start and full documentation for MCP server usage. - Added tests for MCP server functionality to ensure reliability.
629 lines
16 KiB
JavaScript
629 lines
16 KiB
JavaScript
/**
|
|
* Smart Search Tool - Unified search with mode-based execution
|
|
* Modes: auto, exact, fuzzy, semantic, graph
|
|
*
|
|
* Features:
|
|
* - Intent classification (auto mode)
|
|
* - Multi-backend search routing
|
|
* - Result fusion with RRF ranking
|
|
* - Configurable search parameters
|
|
*/
|
|
|
|
import { spawn, execSync } from 'child_process';
|
|
import { existsSync, readdirSync, statSync } from 'fs';
|
|
import { join, resolve, isAbsolute } from 'path';
|
|
import { ensureReady as ensureCodexLensReady, executeCodexLens } from './codex-lens.js';
|
|
|
|
// Search mode constants
|
|
const SEARCH_MODES = ['auto', 'exact', 'fuzzy', 'semantic', 'graph'];
|
|
|
|
// Classification confidence threshold
|
|
const CONFIDENCE_THRESHOLD = 0.7;
|
|
|
|
/**
|
|
* Detection heuristics for intent classification
|
|
*/
|
|
|
|
/**
|
|
* Detect literal string query (simple alphanumeric or quoted strings)
|
|
*/
|
|
function detectLiteral(query) {
|
|
return /^[a-zA-Z0-9_-]+$/.test(query) || /^["'].*["']$/.test(query);
|
|
}
|
|
|
|
/**
|
|
* Detect regex pattern (contains regex metacharacters)
|
|
*/
|
|
function detectRegex(query) {
|
|
return /[.*+?^${}()|[\]\\]/.test(query);
|
|
}
|
|
|
|
/**
|
|
* Detect natural language query (sentence structure, questions, multi-word phrases)
|
|
*/
|
|
function detectNaturalLanguage(query) {
|
|
return query.split(/\s+/).length >= 3 || /\?$/.test(query);
|
|
}
|
|
|
|
/**
|
|
* Detect file path query (path separators, file extensions)
|
|
*/
|
|
function detectFilePath(query) {
|
|
return /[/\]/.test(query) || /\.[a-z]{2,4}$/i.test(query);
|
|
}
|
|
|
|
/**
|
|
* Detect relationship query (import, export, dependency keywords)
|
|
*/
|
|
function detectRelationship(query) {
|
|
return /(import|export|uses?|depends?|calls?|extends?)\s/i.test(query);
|
|
}
|
|
|
|
/**
|
|
* Classify query intent and recommend search mode
|
|
* @param {string} query - Search query string
|
|
* @returns {{mode: string, confidence: number, reasoning: string}}
|
|
*/
|
|
function classifyIntent(query) {
|
|
// Initialize mode scores
|
|
const scores = {
|
|
exact: 0,
|
|
fuzzy: 0,
|
|
semantic: 0,
|
|
graph: 0
|
|
};
|
|
|
|
// Apply detection heuristics with weighted scoring
|
|
if (detectLiteral(query)) {
|
|
scores.exact += 0.8;
|
|
}
|
|
|
|
if (detectRegex(query)) {
|
|
scores.fuzzy += 0.7;
|
|
}
|
|
|
|
if (detectNaturalLanguage(query)) {
|
|
scores.semantic += 0.9;
|
|
}
|
|
|
|
if (detectFilePath(query)) {
|
|
scores.exact += 0.6;
|
|
}
|
|
|
|
if (detectRelationship(query)) {
|
|
scores.graph += 0.85;
|
|
}
|
|
|
|
// Find mode with highest confidence score
|
|
const mode = Object.keys(scores).reduce((a, b) => scores[a] > scores[b] ? a : b);
|
|
const confidence = scores[mode];
|
|
|
|
// Build reasoning string
|
|
const detectedPatterns = [];
|
|
if (detectLiteral(query)) detectedPatterns.push('literal');
|
|
if (detectRegex(query)) detectedPatterns.push('regex');
|
|
if (detectNaturalLanguage(query)) detectedPatterns.push('natural language');
|
|
if (detectFilePath(query)) detectedPatterns.push('file path');
|
|
if (detectRelationship(query)) detectedPatterns.push('relationship');
|
|
|
|
const reasoning = `Query classified as ${mode} (confidence: ${confidence.toFixed(2)}, detected: ${detectedPatterns.join(', ')})`;
|
|
|
|
return { mode, confidence, reasoning };
|
|
}
|
|
|
|
|
|
/**
|
|
* Check if a tool is available in PATH
|
|
* @param {string} toolName - Tool executable name
|
|
* @returns {boolean}
|
|
*/
|
|
function checkToolAvailability(toolName) {
|
|
try {
|
|
const isWindows = process.platform === 'win32';
|
|
const command = isWindows ? 'where' : 'which';
|
|
execSync(`${command} ${toolName}`, { stdio: 'ignore' });
|
|
return true;
|
|
} catch {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Build ripgrep command arguments
|
|
* @param {Object} params - Search parameters
|
|
* @returns {{command: string, args: string[]}}
|
|
*/
|
|
function buildRipgrepCommand(params) {
|
|
const { query, paths = ['.'], contextLines = 0, maxResults = 100, includeHidden = false } = params;
|
|
|
|
const args = [
|
|
'-n', // Show line numbers
|
|
'--color=never', // Disable color output
|
|
'--json' // Output in JSON format
|
|
];
|
|
|
|
// Add context lines if specified
|
|
if (contextLines > 0) {
|
|
args.push('-C', contextLines.toString());
|
|
}
|
|
|
|
// Add max results limit
|
|
if (maxResults > 0) {
|
|
args.push('--max-count', maxResults.toString());
|
|
}
|
|
|
|
// Include hidden files if specified
|
|
if (includeHidden) {
|
|
args.push('--hidden');
|
|
}
|
|
|
|
// Use literal/fixed string matching for exact mode
|
|
args.push('-F', query);
|
|
|
|
// Add search paths
|
|
args.push(...paths);
|
|
|
|
return { command: 'rg', args };
|
|
}
|
|
|
|
/**
|
|
* Mode: auto - Intent classification and mode selection
|
|
* Analyzes query to determine optimal search mode
|
|
*/
|
|
/**
|
|
* Mode: auto - Intent classification and mode selection
|
|
* Analyzes query to determine optimal search mode
|
|
*/
|
|
async function executeAutoMode(params) {
|
|
const { query } = params;
|
|
|
|
// Classify intent
|
|
const classification = classifyIntent(query);
|
|
|
|
// Route to appropriate mode based on classification
|
|
switch (classification.mode) {
|
|
case 'exact':
|
|
// Execute exact mode and enrich result with classification metadata
|
|
const exactResult = await executeExactMode(params);
|
|
return {
|
|
...exactResult,
|
|
metadata: {
|
|
...exactResult.metadata,
|
|
classified_as: classification.mode,
|
|
confidence: classification.confidence,
|
|
reasoning: classification.reasoning
|
|
}
|
|
};
|
|
|
|
case 'fuzzy':
|
|
// Fuzzy mode not yet implemented
|
|
return {
|
|
success: false,
|
|
error: 'Fuzzy mode not yet implemented',
|
|
metadata: {
|
|
classified_as: classification.mode,
|
|
confidence: classification.confidence,
|
|
reasoning: classification.reasoning
|
|
}
|
|
};
|
|
|
|
case 'semantic':
|
|
// Execute semantic mode via CodexLens
|
|
const semanticResult = await executeSemanticMode(params);
|
|
return {
|
|
...semanticResult,
|
|
metadata: {
|
|
...semanticResult.metadata,
|
|
classified_as: classification.mode,
|
|
confidence: classification.confidence,
|
|
reasoning: classification.reasoning
|
|
}
|
|
};
|
|
|
|
case 'graph':
|
|
// Execute graph mode via CodexLens
|
|
const graphResult = await executeGraphMode(params);
|
|
return {
|
|
...graphResult,
|
|
metadata: {
|
|
...graphResult.metadata,
|
|
classified_as: classification.mode,
|
|
confidence: classification.confidence,
|
|
reasoning: classification.reasoning
|
|
}
|
|
};
|
|
|
|
default:
|
|
// Fallback to exact mode with warning
|
|
const fallbackResult = await executeExactMode(params);
|
|
return {
|
|
...fallbackResult,
|
|
metadata: {
|
|
...fallbackResult.metadata,
|
|
classified_as: 'exact',
|
|
confidence: 0.5,
|
|
reasoning: 'Fallback to exact mode due to unknown classification'
|
|
}
|
|
};
|
|
}
|
|
}
|
|
/**
|
|
* Mode: exact - Precise file path and content matching
|
|
* Uses ripgrep for literal string matching
|
|
*/
|
|
async function executeExactMode(params) {
|
|
const { query, paths = [], contextLines = 0, maxResults = 100, includeHidden = false } = params;
|
|
|
|
// Check ripgrep availability
|
|
if (!checkToolAvailability('rg')) {
|
|
return {
|
|
success: false,
|
|
error: 'ripgrep not available - please install ripgrep (rg) to use exact search mode'
|
|
};
|
|
}
|
|
|
|
// Build ripgrep command
|
|
const { command, args } = buildRipgrepCommand({
|
|
query,
|
|
paths: paths.length > 0 ? paths : ['.'],
|
|
contextLines,
|
|
maxResults,
|
|
includeHidden
|
|
});
|
|
|
|
return new Promise((resolve) => {
|
|
const child = spawn(command, args, {
|
|
cwd: process.cwd(),
|
|
stdio: ['ignore', 'pipe', 'pipe']
|
|
});
|
|
|
|
let stdout = '';
|
|
let stderr = '';
|
|
|
|
// Collect stdout
|
|
child.stdout.on('data', (data) => {
|
|
stdout += data.toString();
|
|
});
|
|
|
|
// Collect stderr
|
|
child.stderr.on('data', (data) => {
|
|
stderr += data.toString();
|
|
});
|
|
|
|
// Handle completion
|
|
child.on('close', (code) => {
|
|
// Parse ripgrep JSON output
|
|
const results = [];
|
|
|
|
if (code === 0 || (code === 1 && stdout.trim())) {
|
|
// Code 0: matches found, Code 1: no matches (but may have output)
|
|
const lines = stdout.split('\n').filter(line => line.trim());
|
|
|
|
for (const line of lines) {
|
|
try {
|
|
const item = JSON.parse(line);
|
|
|
|
// Only process match type items
|
|
if (item.type === 'match') {
|
|
const match = {
|
|
file: item.data.path.text,
|
|
line: item.data.line_number,
|
|
column: item.data.submatches && item.data.submatches[0] ? item.data.submatches[0].start + 1 : 1,
|
|
content: item.data.lines.text.trim()
|
|
};
|
|
results.push(match);
|
|
}
|
|
} catch (err) {
|
|
// Skip malformed JSON lines
|
|
continue;
|
|
}
|
|
}
|
|
|
|
resolve({
|
|
success: true,
|
|
results,
|
|
metadata: {
|
|
mode: 'exact',
|
|
backend: 'ripgrep',
|
|
count: results.length,
|
|
query
|
|
}
|
|
});
|
|
} else {
|
|
// Error occurred
|
|
resolve({
|
|
success: false,
|
|
error: `ripgrep execution failed with code ${code}: ${stderr}`,
|
|
results: []
|
|
});
|
|
}
|
|
});
|
|
|
|
// Handle spawn errors
|
|
child.on('error', (error) => {
|
|
resolve({
|
|
success: false,
|
|
error: `Failed to spawn ripgrep: ${error.message}`,
|
|
results: []
|
|
});
|
|
});
|
|
});
|
|
}
|
|
|
|
/**
|
|
* Mode: fuzzy - Approximate matching with tolerance
|
|
* Uses fuzzy matching algorithms for typo-tolerant search
|
|
*/
|
|
async function executeFuzzyMode(params) {
|
|
const { query, paths = [], maxResults = 100 } = params;
|
|
|
|
// TODO: Implement fuzzy search
|
|
// - Use fuse.js for content fuzzy matching
|
|
// - Support approximate file path matching
|
|
// - Configure similarity threshold
|
|
// - Return ranked results
|
|
|
|
return {
|
|
success: false,
|
|
error: 'Fuzzy mode not implemented - fuzzy matching engine pending'
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Mode: semantic - Natural language understanding search
|
|
* Uses CodexLens embeddings for semantic similarity
|
|
*/
|
|
async function executeSemanticMode(params) {
|
|
const { query, paths = [], maxResults = 100 } = params;
|
|
|
|
// Check CodexLens availability
|
|
const readyStatus = await ensureCodexLensReady();
|
|
if (!readyStatus.ready) {
|
|
return {
|
|
success: false,
|
|
error: `CodexLens not available: ${readyStatus.error}. Run 'ccw tool exec codex_lens {"action":"bootstrap"}' to install.`
|
|
};
|
|
}
|
|
|
|
// Determine search path
|
|
const searchPath = paths.length > 0 ? paths[0] : '.';
|
|
|
|
// Execute CodexLens semantic search
|
|
const result = await executeCodexLens(
|
|
['search', query, '--limit', maxResults.toString(), '--json'],
|
|
{ cwd: searchPath }
|
|
);
|
|
|
|
if (!result.success) {
|
|
return {
|
|
success: false,
|
|
error: result.error,
|
|
metadata: {
|
|
mode: 'semantic',
|
|
backend: 'codexlens'
|
|
}
|
|
};
|
|
}
|
|
|
|
// Parse and transform results
|
|
let results = [];
|
|
try {
|
|
// Handle CRLF in output
|
|
const cleanOutput = result.output.replace(/\r\n/g, '\n');
|
|
const parsed = JSON.parse(cleanOutput);
|
|
const data = parsed.result || parsed;
|
|
results = (data.results || []).map(item => ({
|
|
file: item.path || item.file,
|
|
score: item.score || 0,
|
|
content: item.excerpt || item.content || '',
|
|
symbol: item.symbol || null
|
|
}));
|
|
} catch {
|
|
// Return raw output if JSON parsing fails
|
|
return {
|
|
success: true,
|
|
results: [],
|
|
output: result.output,
|
|
metadata: {
|
|
mode: 'semantic',
|
|
backend: 'codexlens',
|
|
count: 0,
|
|
query,
|
|
warning: 'Failed to parse JSON output'
|
|
}
|
|
};
|
|
}
|
|
|
|
return {
|
|
success: true,
|
|
results,
|
|
metadata: {
|
|
mode: 'semantic',
|
|
backend: 'codexlens',
|
|
count: results.length,
|
|
query
|
|
}
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Mode: graph - Dependency and relationship traversal
|
|
* Uses CodexLens symbol extraction for code analysis
|
|
*/
|
|
async function executeGraphMode(params) {
|
|
const { query, paths = [], maxResults = 100 } = params;
|
|
|
|
// Check CodexLens availability
|
|
const readyStatus = await ensureCodexLensReady();
|
|
if (!readyStatus.ready) {
|
|
return {
|
|
success: false,
|
|
error: `CodexLens not available: ${readyStatus.error}. Run 'ccw tool exec codex_lens {"action":"bootstrap"}' to install.`
|
|
};
|
|
}
|
|
|
|
// First, search for relevant files using text search
|
|
const searchPath = paths.length > 0 ? paths[0] : '.';
|
|
|
|
// Execute text search to find files matching the query
|
|
const textResult = await executeCodexLens(
|
|
['search', query, '--limit', maxResults.toString(), '--json'],
|
|
{ cwd: searchPath }
|
|
);
|
|
|
|
if (!textResult.success) {
|
|
return {
|
|
success: false,
|
|
error: textResult.error,
|
|
metadata: {
|
|
mode: 'graph',
|
|
backend: 'codexlens'
|
|
}
|
|
};
|
|
}
|
|
|
|
// Parse results and extract symbols from top files
|
|
let results = [];
|
|
try {
|
|
const parsed = JSON.parse(textResult.output);
|
|
const files = [...new Set((parsed.results || parsed).map(item => item.path || item.file))].slice(0, 10);
|
|
|
|
// Extract symbols from files in parallel
|
|
const symbolPromises = files.map(file =>
|
|
executeCodexLens(['symbol', file, '--json'], { cwd: searchPath })
|
|
.then(result => ({ file, result }))
|
|
);
|
|
|
|
const symbolResults = await Promise.all(symbolPromises);
|
|
|
|
for (const { file, result } of symbolResults) {
|
|
if (result.success) {
|
|
try {
|
|
const symbols = JSON.parse(result.output);
|
|
results.push({
|
|
file,
|
|
symbols: symbols.symbols || symbols,
|
|
relationships: []
|
|
});
|
|
} catch {
|
|
// Skip files with parse errors
|
|
}
|
|
}
|
|
}
|
|
} catch {
|
|
return {
|
|
success: false,
|
|
error: 'Failed to parse search results',
|
|
metadata: {
|
|
mode: 'graph',
|
|
backend: 'codexlens'
|
|
}
|
|
};
|
|
}
|
|
|
|
return {
|
|
success: true,
|
|
results,
|
|
metadata: {
|
|
mode: 'graph',
|
|
backend: 'codexlens',
|
|
count: results.length,
|
|
query,
|
|
note: 'Graph mode provides symbol extraction; full dependency graph analysis pending'
|
|
}
|
|
};
|
|
}
|
|
|
|
/**
|
|
* Main execute function - routes to appropriate mode handler
|
|
*/
|
|
async function execute(params) {
|
|
const { query, mode = 'auto', paths = [], contextLines = 0, maxResults = 100, includeHidden = false } = params;
|
|
|
|
// Validate required parameters
|
|
if (!query || typeof query !== 'string') {
|
|
throw new Error('Parameter "query" is required and must be a string');
|
|
}
|
|
|
|
// Validate mode
|
|
if (!SEARCH_MODES.includes(mode)) {
|
|
throw new Error(`Invalid mode: ${mode}. Valid modes: ${SEARCH_MODES.join(', ')}`);
|
|
}
|
|
|
|
// Route to mode-specific handler
|
|
switch (mode) {
|
|
case 'auto':
|
|
return executeAutoMode(params);
|
|
|
|
case 'exact':
|
|
return executeExactMode(params);
|
|
|
|
case 'fuzzy':
|
|
return executeFuzzyMode(params);
|
|
|
|
case 'semantic':
|
|
return executeSemanticMode(params);
|
|
|
|
case 'graph':
|
|
return executeGraphMode(params);
|
|
|
|
default:
|
|
throw new Error(`Unsupported mode: ${mode}`);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Smart Search Tool Definition
|
|
*/
|
|
export const smartSearchTool = {
|
|
name: 'smart_search',
|
|
description: `Intelligent code search with multiple modes.
|
|
|
|
Usage:
|
|
smart_search(query="function main", path=".") # Auto-select mode
|
|
smart_search(query="def init", mode="exact") # Exact match
|
|
smart_search(query="authentication logic", mode="semantic") # NL search
|
|
|
|
Modes: auto (default), exact, fuzzy, semantic, graph`,
|
|
parameters: {
|
|
type: 'object',
|
|
properties: {
|
|
query: {
|
|
type: 'string',
|
|
description: 'Search query (file pattern, text content, or natural language)'
|
|
},
|
|
mode: {
|
|
type: 'string',
|
|
enum: SEARCH_MODES,
|
|
description: 'Search mode (default: auto)',
|
|
default: 'auto'
|
|
},
|
|
paths: {
|
|
type: 'array',
|
|
description: 'Paths to search within (default: current directory)',
|
|
items: {
|
|
type: 'string'
|
|
},
|
|
default: []
|
|
},
|
|
contextLines: {
|
|
type: 'number',
|
|
description: 'Number of context lines around matches (default: 0)',
|
|
default: 0
|
|
},
|
|
maxResults: {
|
|
type: 'number',
|
|
description: 'Maximum number of results to return (default: 100)',
|
|
default: 100
|
|
},
|
|
includeHidden: {
|
|
type: 'boolean',
|
|
description: 'Include hidden files/directories (default: false)',
|
|
default: false
|
|
}
|
|
},
|
|
required: ['query']
|
|
},
|
|
execute
|
|
};
|