mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-15 02:42:45 +08:00
14 KiB
14 KiB
Action: Analyze Requirements
将用户问题描述拆解为多个分析维度,匹配 Spec,评估覆盖度,检测歧义。
Purpose
- 将单一用户描述拆解为多个独立关注维度
- 为每个维度匹配 problem-taxonomy(检测)+ tuning-strategies(修复)
- 以"有修复策略"为标准判断是否满足需求
- 检测歧义并在必要时请求用户澄清
Preconditions
state.status === 'running'state.target_skill !== nullstate.completed_actions.includes('action-init')!state.completed_actions.includes('action-analyze-requirements')
Execution
Phase 1: 维度拆解 (Gemini CLI)
调用 Gemini 对用户描述进行语义分析,拆解为独立维度:
async function analyzeDimensions(state, workDir) {
const prompt = `
PURPOSE: 分析用户问题描述,拆解为独立的关注维度
TASK:
• 识别用户描述中的多个关注点(每个关注点应该是独立的、可单独分析的)
• 为每个关注点提取关键词(中英文均可)
• 推断可能的问题类别:
- context_explosion: 上下文/Token 相关
- memory_loss: 遗忘/约束丢失相关
- dataflow_break: 状态/数据流相关
- agent_failure: Agent/子任务相关
- prompt_quality: 提示词/输出质量相关
- architecture: 架构/结构相关
- performance: 性能/效率相关
- error_handling: 错误/异常处理相关
- output_quality: 输出质量/验证相关
- user_experience: 交互/体验相关
• 评估推断置信度 (0-1)
INPUT:
User description: ${state.user_issue_description}
Target skill: ${state.target_skill.name}
Skill structure: ${JSON.stringify(state.target_skill.phases)}
MODE: analysis
CONTEXT: @specs/problem-taxonomy.md @specs/dimension-mapping.md
EXPECTED: JSON (不要包含 markdown 代码块标记)
{
"dimensions": [
{
"id": "DIM-001",
"description": "关注点的简短描述",
"keywords": ["关键词1", "关键词2"],
"inferred_category": "问题类别",
"confidence": 0.85,
"reasoning": "推断理由"
}
],
"analysis_notes": "整体分析说明"
}
RULES:
- 每个维度必须独立,不重叠
- 低于 0.5 置信度的推断应标注需要澄清
- 如果用户描述非常模糊,至少提取一个 "general" 维度
`;
const cliCommand = `ccw cli -p "${escapeForShell(prompt)}" --tool gemini --mode analysis --cd "${state.target_skill.path}"`;
console.log('Phase 1: 执行 Gemini 维度拆解分析...');
const result = Bash({
command: cliCommand,
run_in_background: true,
timeout: 300000
});
return result;
}
Phase 2: Spec 匹配
基于 specs/dimension-mapping.md 规则为每个维度匹配检测模式和修复策略:
function matchSpecs(dimensions) {
// 加载映射规则
const mappingRules = loadMappingRules();
return dimensions.map(dim => {
// 匹配 taxonomy pattern
const taxonomyMatch = findTaxonomyMatch(dim.inferred_category, mappingRules);
// 匹配 strategy
const strategyMatch = findStrategyMatch(dim.inferred_category, mappingRules);
// 判断是否满足(核心标准:有修复策略)
const hasFix = strategyMatch !== null && strategyMatch.strategies.length > 0;
return {
dimension_id: dim.id,
taxonomy_match: taxonomyMatch,
strategy_match: strategyMatch,
has_fix: hasFix,
needs_gemini_analysis: taxonomyMatch === null // 无内置检测时需要 Gemini 深度分析
};
});
}
function findTaxonomyMatch(category, rules) {
const patternMapping = {
'context_explosion': { category: 'context_explosion', pattern_ids: ['CTX-001', 'CTX-002', 'CTX-003', 'CTX-004', 'CTX-005'], severity_hint: 'high' },
'memory_loss': { category: 'memory_loss', pattern_ids: ['MEM-001', 'MEM-002', 'MEM-003', 'MEM-004', 'MEM-005'], severity_hint: 'high' },
'dataflow_break': { category: 'dataflow_break', pattern_ids: ['DF-001', 'DF-002', 'DF-003', 'DF-004', 'DF-005'], severity_hint: 'critical' },
'agent_failure': { category: 'agent_failure', pattern_ids: ['AGT-001', 'AGT-002', 'AGT-003', 'AGT-004', 'AGT-005', 'AGT-006'], severity_hint: 'high' },
'performance': { category: 'performance', pattern_ids: ['CTX-001', 'CTX-003'], severity_hint: 'medium' },
'error_handling': { category: 'error_handling', pattern_ids: ['AGT-001', 'AGT-002'], severity_hint: 'medium' }
};
return patternMapping[category] || null;
}
function findStrategyMatch(category, rules) {
const strategyMapping = {
'context_explosion': { strategies: ['sliding_window', 'path_reference', 'context_summarization', 'structured_state'], risk_levels: ['low', 'low', 'low', 'medium'] },
'memory_loss': { strategies: ['constraint_injection', 'state_constraints_field', 'checkpoint_restore', 'goal_embedding'], risk_levels: ['low', 'low', 'low', 'medium'] },
'dataflow_break': { strategies: ['state_centralization', 'schema_enforcement', 'field_normalization'], risk_levels: ['medium', 'low', 'low'] },
'agent_failure': { strategies: ['error_wrapping', 'result_validation', 'flatten_nesting'], risk_levels: ['low', 'low', 'medium'] },
'prompt_quality': { strategies: ['structured_prompt', 'output_schema', 'grounding_context', 'format_enforcement'], risk_levels: ['low', 'low', 'medium', 'low'] },
'architecture': { strategies: ['phase_decomposition', 'interface_contracts', 'plugin_architecture'], risk_levels: ['medium', 'medium', 'high'] },
'performance': { strategies: ['token_budgeting', 'parallel_execution', 'result_caching', 'lazy_loading'], risk_levels: ['low', 'low', 'low', 'low'] },
'error_handling': { strategies: ['graceful_degradation', 'error_propagation', 'structured_logging'], risk_levels: ['low', 'low', 'low'] },
'output_quality': { strategies: ['quality_gates', 'output_validation', 'template_enforcement'], risk_levels: ['low', 'low', 'low'] },
'user_experience': { strategies: ['progress_tracking', 'status_communication', 'interactive_checkpoints'], risk_levels: ['low', 'low', 'low'] }
};
// Fallback to custom
return strategyMapping[category] || { strategies: ['custom'], risk_levels: ['medium'] };
}
Phase 3: 覆盖度评估
评估所有维度的 Spec 覆盖情况:
function evaluateCoverage(specMatches) {
const total = specMatches.length;
const withDetection = specMatches.filter(m => m.taxonomy_match !== null).length;
const withFix = specMatches.filter(m => m.has_fix).length;
const rate = total > 0 ? Math.round((withFix / total) * 100) : 0;
let status;
if (rate >= 80) {
status = 'satisfied';
} else if (rate >= 50) {
status = 'partial';
} else {
status = 'unsatisfied';
}
return {
total_dimensions: total,
with_detection: withDetection,
with_fix_strategy: withFix,
coverage_rate: rate,
status: status
};
}
Phase 4: 歧义检测
识别需要用户澄清的歧义点:
function detectAmbiguities(dimensions, specMatches) {
const ambiguities = [];
for (const dim of dimensions) {
const match = specMatches.find(m => m.dimension_id === dim.id);
// 检测1: 低置信度 (< 0.5)
if (dim.confidence < 0.5) {
ambiguities.push({
dimension_id: dim.id,
type: 'vague_description',
description: `维度 "${dim.description}" 描述模糊,推断置信度低 (${dim.confidence})`,
possible_interpretations: suggestInterpretations(dim),
needs_clarification: true
});
}
// 检测2: 无匹配类别
if (!match || (!match.taxonomy_match && !match.strategy_match)) {
ambiguities.push({
dimension_id: dim.id,
type: 'no_category_match',
description: `维度 "${dim.description}" 无法匹配到已知问题类别`,
possible_interpretations: ['custom'],
needs_clarification: true
});
}
// 检测3: 关键词冲突(可能属于多个类别)
if (dim.keywords.length > 3 && hasConflictingKeywords(dim.keywords)) {
ambiguities.push({
dimension_id: dim.id,
type: 'conflicting_keywords',
description: `维度 "${dim.description}" 的关键词可能指向多个不同问题`,
possible_interpretations: inferMultipleCategories(dim.keywords),
needs_clarification: true
});
}
}
return ambiguities;
}
function suggestInterpretations(dim) {
// 基于关键词推荐可能的解释
const categories = [
'context_explosion', 'memory_loss', 'dataflow_break', 'agent_failure',
'prompt_quality', 'architecture', 'performance', 'error_handling'
];
return categories.slice(0, 4); // 返回最常见的 4 个作为选项
}
function hasConflictingKeywords(keywords) {
// 检查关键词是否指向不同方向
const categoryHints = keywords.map(k => getKeywordCategoryHint(k));
const uniqueCategories = [...new Set(categoryHints.filter(c => c))];
return uniqueCategories.length > 1;
}
function getKeywordCategoryHint(keyword) {
const keywordMap = {
'慢': 'performance', 'slow': 'performance',
'遗忘': 'memory_loss', 'forget': 'memory_loss',
'状态': 'dataflow_break', 'state': 'dataflow_break',
'agent': 'agent_failure', '失败': 'agent_failure',
'token': 'context_explosion', '上下文': 'context_explosion'
};
return keywordMap[keyword.toLowerCase()];
}
User Interaction
如果检测到需要澄清的歧义,暂停并询问用户:
async function handleAmbiguities(ambiguities, dimensions) {
const needsClarification = ambiguities.filter(a => a.needs_clarification);
if (needsClarification.length === 0) {
return null; // 无需澄清
}
const questions = needsClarification.slice(0, 4).map(a => {
const dim = dimensions.find(d => d.id === a.dimension_id);
return {
question: `关于 "${dim.description}",您具体指的是?`,
header: a.dimension_id,
options: a.possible_interpretations.map(interp => ({
label: getCategoryLabel(interp),
description: getCategoryDescription(interp)
})),
multiSelect: false
};
});
return await AskUserQuestion({ questions });
}
function getCategoryLabel(category) {
const labels = {
'context_explosion': '上下文膨胀',
'memory_loss': '指令遗忘',
'dataflow_break': '数据流问题',
'agent_failure': 'Agent 协调问题',
'prompt_quality': '提示词质量',
'architecture': '架构问题',
'performance': '性能问题',
'error_handling': '错误处理',
'custom': '其他问题'
};
return labels[category] || category;
}
function getCategoryDescription(category) {
const descriptions = {
'context_explosion': 'Token 累积导致上下文过大',
'memory_loss': '早期指令或约束在后期丢失',
'dataflow_break': '状态数据在阶段间不一致',
'agent_failure': '子 Agent 调用失败或结果异常',
'prompt_quality': '提示词模糊导致输出不稳定',
'architecture': '阶段划分或模块结构不合理',
'performance': '执行慢或 Token 消耗高',
'error_handling': '错误恢复机制不完善',
'custom': '需要自定义分析的问题'
};
return descriptions[category] || '需要进一步分析';
}
Output
State Updates
return {
stateUpdates: {
requirement_analysis: {
status: ambiguities.some(a => a.needs_clarification) ? 'needs_clarification' : 'completed',
analyzed_at: new Date().toISOString(),
dimensions: dimensions,
spec_matches: specMatches,
coverage: coverageResult,
ambiguities: ambiguities
},
// 根据分析结果自动优化 focus_areas
focus_areas: deriveOptimalFocusAreas(specMatches)
},
outputFiles: [
`${workDir}/requirement-analysis.json`,
`${workDir}/requirement-analysis.md`
],
summary: generateSummary(dimensions, coverageResult, ambiguities)
};
function deriveOptimalFocusAreas(specMatches) {
const coreCategories = ['context', 'memory', 'dataflow', 'agent'];
const matched = specMatches
.filter(m => m.taxonomy_match !== null)
.map(m => {
// 映射到诊断 focus_area
const category = m.taxonomy_match.category;
if (category === 'context_explosion' || category === 'performance') return 'context';
if (category === 'memory_loss') return 'memory';
if (category === 'dataflow_break') return 'dataflow';
if (category === 'agent_failure' || category === 'error_handling') return 'agent';
return null;
})
.filter(f => f && coreCategories.includes(f));
// 去重
return [...new Set(matched)];
}
function generateSummary(dimensions, coverage, ambiguities) {
const dimCount = dimensions.length;
const coverageStatus = coverage.status;
const ambiguityCount = ambiguities.filter(a => a.needs_clarification).length;
let summary = `分析完成:${dimCount} 个维度`;
summary += `,覆盖度 ${coverage.coverage_rate}% (${coverageStatus})`;
if (ambiguityCount > 0) {
summary += `,${ambiguityCount} 个歧义点待澄清`;
}
return summary;
}
Output Files
requirement-analysis.json
{
"timestamp": "2024-01-01T00:00:00Z",
"target_skill": "skill-name",
"user_description": "原始用户描述",
"dimensions": [...],
"spec_matches": [...],
"coverage": {...},
"ambiguities": [...],
"derived_focus_areas": [...]
}
requirement-analysis.md
# 需求分析报告
## 用户描述
> ${user_issue_description}
## 维度拆解
| ID | 描述 | 类别 | 置信度 |
|----|------|------|--------|
| DIM-001 | ... | ... | 0.85 |
## Spec 匹配
| 维度 | 检测模式 | 修复策略 | 是否满足 |
|------|----------|----------|----------|
| DIM-001 | CTX-001,002 | sliding_window | ✓ |
## 覆盖度评估
- 总维度数: N
- 有检测手段: M
- 有修复策略: K (满足标准)
- 覆盖率: X%
- 状态: satisfied/partial/unsatisfied
## 歧义点
(如有)
Error Handling
| Error | Recovery |
|---|---|
| Gemini CLI 超时 | 重试一次,仍失败则使用简化分析 |
| JSON 解析失败 | 尝试修复 JSON 或使用默认维度 |
| 无法匹配任何类别 | 全部归类为 custom,触发 Gemini 深度分析 |
Next Actions
- 如果
requirement_analysis.status === 'completed': 继续到action-diagnose-* - 如果
requirement_analysis.status === 'needs_clarification': 等待用户澄清后重新执行 - 如果
coverage.status === 'unsatisfied': 自动触发action-gemini-analysis进行深度分析