16 KiB
name, description, argument-hint, examples
| name | description | argument-hint | examples | ||
|---|---|---|---|---|---|
| init | Initialize project-level state with intelligent project analysis using cli-explore-agent | [--regenerate] |
|
Workflow Init Command (/workflow:init)
Overview
Initializes .workflow/project.json with comprehensive project understanding by leveraging cli-explore-agent for intelligent analysis and memory discovery for SKILL package indexing.
Key Features:
- Intelligent Project Analysis: Uses cli-explore-agent's Deep Scan mode
- Technology Stack Detection: Identifies languages, frameworks, build tools
- Architecture Overview: Discovers patterns, layers, key components
- Memory Discovery: Scans and indexes available SKILL packages
- Smart Recommendations: Suggests memory commands based on project state
- One-time Initialization: Skips if project.json exists (unless --regenerate)
Usage
/workflow:init # Initialize project state (skip if exists)
/workflow:init --regenerate # Force regeneration of project.json
Implementation Flow
Step 1: Check Existing State
# Check if project.json already exists
bash(test -f .workflow/project.json && echo "EXISTS" || echo "NOT_FOUND")
If EXISTS and no --regenerate flag:
Project already initialized at .workflow/project.json
Use /workflow:init --regenerate to rebuild project analysis
Use /workflow:status --project to view current state
If NOT_FOUND or --regenerate flag: Proceed to initialization
Step 2: Project Discovery
# Get project name and root
bash(basename "$(git rev-parse --show-toplevel 2>/dev/null || pwd)")
bash(git rev-parse --show-toplevel 2>/dev/null || pwd)
# Create .workflow directory
bash(mkdir -p .workflow)
Step 3: Intelligent Project Analysis
Invoke cli-explore-agent with Deep Scan mode for comprehensive understanding:
Task(
subagent_type="cli-explore-agent",
description="Deep project analysis",
prompt=`
Analyze project structure and technology stack for workflow initialization.
## Analysis Objective
Perform Deep Scan analysis to build comprehensive project understanding for .workflow/project.json initialization.
## Required Analysis
### 1. Technology Stack Detection
- **Primary Languages**: Identify all programming languages with file counts
- **Frameworks**: Detect web frameworks (React, Vue, Express, Django, etc.)
- **Build Tools**: Identify build systems (npm, cargo, maven, gradle, etc.)
- **Test Frameworks**: Find testing tools (jest, pytest, go test, etc.)
### 2. Project Architecture
- **Architecture Style**: Identify patterns (MVC, microservices, monorepo, etc.)
- **Layer Structure**: Discover architectural layers (presentation, business, data)
- **Design Patterns**: Find common patterns (singleton, factory, repository, etc.)
- **Key Components**: List 5-10 core modules/components with brief descriptions
### 3. Project Metrics
- **Total Files**: Count source code files
- **Lines of Code**: Estimate total LOC
- **Module Count**: Number of top-level modules/packages
- **Complexity**: Overall complexity rating (low/medium/high)
### 4. Entry Points
- **Main Entry**: Identify primary application entry point(s)
- **CLI Commands**: Discover available commands/scripts
- **API Endpoints**: Find HTTP/REST/GraphQL endpoints (if applicable)
## Execution Mode
Use **Deep Scan** with Dual-Source Strategy:
- Phase 1: Bash structural scan (fast pattern discovery)
- Phase 2: Gemini semantic analysis (design intent, patterns)
- Phase 3: Synthesis (merge findings with attribution)
## Analysis Scope
- Root directory: ${projectRoot}
- Exclude: node_modules, dist, build, .git, vendor, __pycache__
- Focus: Source code directories (src, lib, pkg, app, etc.)
## Output Format
Return JSON structure for programmatic processing:
\`\`\`json
{
"technology_stack": {
"languages": [
{"name": "TypeScript", "file_count": 150, "primary": true},
{"name": "Python", "file_count": 30, "primary": false}
],
"frameworks": ["React", "Express", "TypeORM"],
"build_tools": ["npm", "webpack"],
"test_frameworks": ["Jest", "Supertest"]
},
"architecture": {
"style": "Layered MVC with Repository Pattern",
"layers": ["presentation", "business-logic", "data-access"],
"patterns": ["MVC", "Repository Pattern", "Dependency Injection"],
"key_components": [
{
"name": "Authentication Module",
"path": "src/auth",
"description": "JWT-based authentication with OAuth2 support",
"importance": "high"
},
{
"name": "User Management",
"path": "src/users",
"description": "User CRUD operations and profile management",
"importance": "high"
}
]
},
"metrics": {
"total_files": 180,
"lines_of_code": 15000,
"module_count": 12,
"complexity": "medium"
},
"entry_points": {
"main": "src/index.ts",
"cli_commands": ["npm start", "npm test", "npm run build"],
"api_endpoints": ["/api/auth", "/api/users", "/api/posts"]
},
"analysis_metadata": {
"timestamp": "2025-01-18T10:30:00Z",
"mode": "deep-scan",
"source": "cli-explore-agent"
}
}
\`\`\`
## Quality Requirements
- ✅ All technology stack items verified (no guessing)
- ✅ Key components include file paths for navigation
- ✅ Architecture style based on actual code patterns, not assumptions
- ✅ Metrics calculated from actual file counts/lines
- ✅ Entry points verified as executable
`
)
Agent Output: JSON structure with comprehensive project analysis
Step 4: Build project.json from Analysis
Data Processing:
// Parse agent analysis output
const analysis = JSON.parse(agentOutput);
// Build complete project.json structure
const projectMeta = {
// Basic metadata
project_name: projectName,
initialized_at: new Date().toISOString(),
// Project overview (from cli-explore-agent)
overview: {
description: generateDescription(analysis), // e.g., "TypeScript web application with React frontend"
technology_stack: analysis.technology_stack,
architecture: {
style: analysis.architecture.style,
layers: analysis.architecture.layers,
patterns: analysis.architecture.patterns
},
key_components: analysis.architecture.key_components,
entry_points: analysis.entry_points,
metrics: analysis.metrics
},
// Feature registry (initially empty, populated by complete)
features: [],
// Statistics
statistics: {
total_features: 0,
total_sessions: 0,
last_updated: new Date().toISOString()
},
// Analysis metadata
_metadata: {
initialized_by: "cli-explore-agent",
analysis_timestamp: analysis.analysis_metadata.timestamp,
analysis_mode: analysis.analysis_metadata.mode
}
};
// Helper: Generate project description
function generateDescription(analysis) {
const primaryLang = analysis.technology_stack.languages.find(l => l.primary);
const frameworks = analysis.technology_stack.frameworks.slice(0, 2).join(', ');
return `${primaryLang.name} project using ${frameworks}`;
}
// Write to .workflow/project.json
Write('.workflow/project.json', JSON.stringify(projectMeta, null, 2));
Step 5: Output Summary
✓ Project initialized successfully
## Project Overview
Name: ${projectName}
Description: ${overview.description}
### Technology Stack
Languages: ${languages.map(l => l.name).join(', ')}
Frameworks: ${frameworks.join(', ')}
### Architecture
Style: ${architecture.style}
Components: ${key_components.length} core modules identified
### Project Metrics
Files: ${metrics.total_files}
LOC: ${metrics.lines_of_code}
Complexity: ${metrics.complexity}
### Memory Resources
SKILL Packages: ${memory_resources.skills.length}
Documentation: ${memory_resources.documentation.length} project(s)
Module Docs: ${memory_resources.module_docs.length} file(s)
Gaps: ${memory_resources.gaps.join(', ') || 'none'}
## Quick Start
• /workflow:plan "feature description" - Start new workflow
• /workflow:status --project - View project state
---
Project state saved to: .workflow/project.json
Memory index updated: ${memory_resources.last_scanned}
Extended project.json Schema
Complete Structure
{
"project_name": "claude_dms3",
"initialized_at": "2025-01-18T10:00:00Z",
"overview": {
"description": "TypeScript workflow automation system with AI agent orchestration",
"technology_stack": {
"languages": [
{"name": "TypeScript", "file_count": 150, "primary": true},
{"name": "Bash", "file_count": 30, "primary": false}
],
"frameworks": ["Node.js"],
"build_tools": ["npm"],
"test_frameworks": ["Jest"]
},
"architecture": {
"style": "Agent-based workflow orchestration with modular command system",
"layers": ["command-layer", "agent-orchestration", "cli-integration"],
"patterns": ["Command Pattern", "Agent Pattern", "Template Method"]
},
"key_components": [
{
"name": "Workflow Planning",
"path": ".claude/commands/workflow",
"description": "Multi-phase planning workflow with brainstorming and task generation",
"importance": "high"
},
{
"name": "Agent System",
"path": ".claude/agents",
"description": "Specialized agents for code development, testing, documentation",
"importance": "high"
},
{
"name": "CLI Tool Integration",
"path": ".claude/scripts",
"description": "Gemini, Qwen, Codex wrapper scripts for AI-powered analysis",
"importance": "medium"
}
],
"entry_points": {
"main": ".claude/commands/workflow/plan.md",
"cli_commands": ["/workflow:plan", "/workflow:execute", "/memory:docs"],
"api_endpoints": []
},
"metrics": {
"total_files": 180,
"lines_of_code": 15000,
"module_count": 12,
"complexity": "medium"
}
},
"features": [],
"statistics": {
"total_features": 0,
"total_sessions": 0,
"last_updated": "2025-01-18T10:00:00Z"
},
"memory_resources": {
"skills": [
{"name": "claude_dms3", "type": "project_docs", "path": ".claude/skills/claude_dms3"},
{"name": "workflow-progress", "type": "workflow_progress", "path": ".claude/skills/workflow-progress"}
],
"documentation": [
{
"name": "claude_dms3",
"path": ".workflow/docs/claude_dms3",
"has_readme": true,
"has_architecture": true
}
],
"module_docs": [
".claude/commands/workflow/CLAUDE.md",
".claude/agents/CLAUDE.md"
],
"gaps": ["tech_stack"],
"last_scanned": "2025-01-18T10:05:00Z"
},
"_metadata": {
"initialized_by": "cli-explore-agent",
"analysis_timestamp": "2025-01-18T10:00:00Z",
"analysis_mode": "deep-scan",
"memory_scan_timestamp": "2025-01-18T10:05:00Z"
}
}
Phase 5: Discover Memory Resources
Goal: Scan and index available SKILL packages (memory command products) using agent delegation
Invoke general-purpose agent to discover and catalog all memory products:
Task(
subagent_type="general-purpose",
description="Discover memory resources",
prompt=`
Discover and index all memory command products: SKILL packages, documentation, and CLAUDE.md files.
## Discovery Scope
1. **SKILL Packages** (.claude/skills/) - Generated by /memory:skill-memory, /memory:tech-research, etc.
2. **Documentation** (.workflow/docs/) - Generated by /memory:docs
3. **Module Docs** (**/CLAUDE.md) - Generated by /memory:update-full, /memory:update-related
## Discovery Tasks
### 1. Scan SKILL Packages
- List all directories in .claude/skills/
- For each: extract name, classify type, record path
- Types: workflow-progress | codemap-* | style-* | tech_stacks | project_docs
### 2. Scan Documentation
- List directories in .workflow/docs/
- For each project: name, path, check README.md, ARCHITECTURE.md existence
### 3. Scan CLAUDE.md Files
- Find all **/CLAUDE.md (exclude: node_modules, .git, dist, build)
- Return path list only
### 4. Identify Gaps
- No project SKILL? → "project_skill"
- No documentation? → "documentation"
- Missing tech stack SKILL? → "tech_stack"
- No workflow-progress? → "workflow_history"
- <10% modules have CLAUDE.md? → "module_docs_low_coverage"
### 5. Return JSON:
{
"skills": [
{"name": "claude_dms3", "type": "project_docs", "path": ".claude/skills/claude_dms3"},
{"name": "workflow-progress", "type": "workflow_progress", "path": ".claude/skills/workflow-progress"}
],
"documentation": [
{
"name": "my_project",
"path": ".workflow/docs/my_project",
"has_readme": true,
"has_architecture": true
}
],
"module_docs": [
"src/core/CLAUDE.md",
"lib/utils/CLAUDE.md"
],
"gaps": ["tech_stack", "module_docs_low_coverage"]
}
## Context
- Project tech stack: ${JSON.stringify(analysis.technology_stack)}
- Check .workflow/.archives for session history
- If directories missing, return empty state with recommendations
`
)
Agent Output: JSON structure with skills, documentation, module_docs, and gaps
Update project.json:
const memoryDiscovery = JSON.parse(agentOutput);
projectMeta.memory_resources = {
...memoryDiscovery,
last_scanned: new Date().toISOString()
};
Write('.workflow/project.json', JSON.stringify(projectMeta, null, 2));
Output Summary:
Memory Resources Indexed:
- SKILL Packages: ${skills.length}
- Documentation: ${documentation.length} project(s)
- Module Docs: ${module_docs.length} file(s)
- Gaps: ${gaps.join(', ') || 'none'}
Regeneration Behavior
When using --regenerate flag:
-
Backup existing file:
bash(cp .workflow/project.json .workflow/project.json.backup) -
Preserve features array:
const existingMeta = JSON.parse(Read('.workflow/project.json')); const preservedFeatures = existingMeta.features || []; const preservedStats = existingMeta.statistics || {}; -
Re-run cli-explore-agent analysis
-
Re-run memory discovery (Phase 5)
-
Merge preserved data with new analysis:
const newProjectMeta = { ...analysisResults, features: preservedFeatures, // Keep existing features statistics: preservedStats // Keep statistics }; -
Output:
✓ Project analysis regenerated Backup saved: .workflow/project.json.backup Updated: - Technology stack analysis - Architecture overview - Key components discovery - Memory resources index Preserved: - ${preservedFeatures.length} existing features - Session statistics
Error Handling
Agent Failure
If cli-explore-agent fails:
1. Fall back to basic initialization
2. Use get_modules_by_depth.sh for structure
3. Create minimal project.json with placeholder overview
4. Log warning: "Project initialized with basic analysis. Run /workflow:init --regenerate for full analysis"
Missing Tools
If Gemini CLI unavailable:
1. Agent uses Qwen fallback
2. If both fail, use bash-only analysis
3. Mark in _metadata: "analysis_mode": "bash-fallback"
Invalid Project Root
If not in git repo and empty directory:
1. Warn user: "Empty project detected"
2. Create minimal project.json
3. Suggest: "Add code files and run /workflow:init --regenerate"
Memory Discovery Failures
Missing Directories:
If .claude/skills, .workflow/docs, or CLAUDE.md files not found:
1. Return empty state for that category
2. Mark in gaps.missing array
3. Continue initialization
Metadata Read Failures:
If SKILL.md files are unreadable:
1. Include SKILL with basic info: name (from directory), type (inferred), path
2. Log warning: "SKILL package {name} has invalid metadata"
3. Continue with other SKILLs
Coverage Check Failures:
If unable to determine module doc coverage:
1. Skip adding "module_docs_low_coverage" to gaps
2. Continue with other gap checks
Default Empty State:
{
"memory_resources": {
"skills": [],
"documentation": [],
"module_docs": [],
"gaps": ["project_skill", "documentation", "tech_stack", "workflow_history", "module_docs"],
"last_scanned": "ISO_TIMESTAMP"
}
}