mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-06 01:54:11 +08:00
- Added ANNIndex class for approximate nearest neighbor search using HNSW. - Integrated ANN index with VectorStore for enhanced search capabilities. - Updated test suite for ANN index, including tests for adding, searching, saving, and loading vectors. - Modified existing tests to accommodate changes in search performance expectations. - Improved error handling for file operations in tests to ensure compatibility with Windows file locks. - Adjusted hybrid search performance assertions for increased stability in CI environments.
548 lines
17 KiB
Python
548 lines
17 KiB
Python
#!/usr/bin/env python3
|
|
"""Generate vector embeddings for existing CodexLens indexes.
|
|
|
|
This script processes all files in a CodexLens index database and generates
|
|
semantic vector embeddings for code chunks. The embeddings are stored in the
|
|
same SQLite database in the 'semantic_chunks' table.
|
|
|
|
Performance optimizations:
|
|
- Parallel file processing using ProcessPoolExecutor
|
|
- Batch embedding generation for efficient GPU/CPU utilization
|
|
- Batch database writes to minimize I/O overhead
|
|
- HNSW index auto-generation for fast similarity search
|
|
|
|
Requirements:
|
|
pip install codexlens[semantic]
|
|
# or
|
|
pip install fastembed numpy hnswlib
|
|
|
|
Usage:
|
|
# Generate embeddings for a single index
|
|
python generate_embeddings.py /path/to/_index.db
|
|
|
|
# Generate embeddings with parallel processing
|
|
python generate_embeddings.py /path/to/_index.db --workers 4
|
|
|
|
# Use specific embedding model and batch size
|
|
python generate_embeddings.py /path/to/_index.db --model code --batch-size 256
|
|
|
|
# Generate embeddings for all indexes in a directory
|
|
python generate_embeddings.py --scan ~/.codexlens/indexes
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
import multiprocessing
|
|
import os
|
|
import sqlite3
|
|
import sys
|
|
import time
|
|
from concurrent.futures import ProcessPoolExecutor, as_completed
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import List, Optional, Tuple
|
|
|
|
# Configure logging
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format='%(asctime)s - %(levelname)s - %(message)s',
|
|
datefmt='%H:%M:%S'
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class FileData:
|
|
"""Data for a single file to process."""
|
|
full_path: str
|
|
content: str
|
|
language: str
|
|
|
|
|
|
@dataclass
|
|
class ChunkData:
|
|
"""Processed chunk data ready for embedding."""
|
|
file_path: str
|
|
content: str
|
|
metadata: dict
|
|
|
|
|
|
def check_dependencies():
|
|
"""Check if semantic search dependencies are available."""
|
|
try:
|
|
from codexlens.semantic import SEMANTIC_AVAILABLE
|
|
if not SEMANTIC_AVAILABLE:
|
|
logger.error("Semantic search dependencies not available")
|
|
logger.error("Install with: pip install codexlens[semantic]")
|
|
logger.error("Or: pip install fastembed numpy hnswlib")
|
|
return False
|
|
return True
|
|
except ImportError as exc:
|
|
logger.error(f"Failed to import codexlens: {exc}")
|
|
logger.error("Make sure codexlens is installed: pip install codexlens")
|
|
return False
|
|
|
|
|
|
def count_files(index_db_path: Path) -> int:
|
|
"""Count total files in index."""
|
|
try:
|
|
with sqlite3.connect(index_db_path) as conn:
|
|
cursor = conn.execute("SELECT COUNT(*) FROM files")
|
|
return cursor.fetchone()[0]
|
|
except Exception as exc:
|
|
logger.error(f"Failed to count files: {exc}")
|
|
return 0
|
|
|
|
|
|
def check_existing_chunks(index_db_path: Path) -> int:
|
|
"""Check if semantic chunks already exist."""
|
|
try:
|
|
with sqlite3.connect(index_db_path) as conn:
|
|
# Check if table exists
|
|
cursor = conn.execute(
|
|
"SELECT name FROM sqlite_master WHERE type='table' AND name='semantic_chunks'"
|
|
)
|
|
if not cursor.fetchone():
|
|
return 0
|
|
|
|
# Count existing chunks
|
|
cursor = conn.execute("SELECT COUNT(*) FROM semantic_chunks")
|
|
return cursor.fetchone()[0]
|
|
except Exception:
|
|
return 0
|
|
|
|
|
|
def process_file_worker(args: Tuple[str, str, str, int]) -> List[ChunkData]:
|
|
"""Worker function to process a single file (runs in separate process).
|
|
|
|
Args:
|
|
args: Tuple of (file_path, content, language, chunk_size)
|
|
|
|
Returns:
|
|
List of ChunkData objects
|
|
"""
|
|
file_path, content, language, chunk_size = args
|
|
|
|
try:
|
|
from codexlens.semantic.chunker import Chunker, ChunkConfig
|
|
|
|
chunker = Chunker(config=ChunkConfig(max_chunk_size=chunk_size))
|
|
chunks = chunker.chunk_sliding_window(
|
|
content,
|
|
file_path=file_path,
|
|
language=language
|
|
)
|
|
|
|
return [
|
|
ChunkData(
|
|
file_path=file_path,
|
|
content=chunk.content,
|
|
metadata=chunk.metadata or {}
|
|
)
|
|
for chunk in chunks
|
|
]
|
|
except Exception as exc:
|
|
logger.debug(f"Error processing {file_path}: {exc}")
|
|
return []
|
|
|
|
|
|
def generate_embeddings_for_index(
|
|
index_db_path: Path,
|
|
model_profile: str = "code",
|
|
force: bool = False,
|
|
chunk_size: int = 2000,
|
|
workers: int = 0,
|
|
batch_size: int = 256,
|
|
) -> dict:
|
|
"""Generate embeddings for all files in an index.
|
|
|
|
Performance optimizations:
|
|
- Parallel file processing (chunking)
|
|
- Batch embedding generation
|
|
- Batch database writes
|
|
- HNSW index auto-generation
|
|
|
|
Args:
|
|
index_db_path: Path to _index.db file
|
|
model_profile: Model profile to use (fast, code, multilingual, balanced)
|
|
force: If True, regenerate even if embeddings exist
|
|
chunk_size: Maximum chunk size in characters
|
|
workers: Number of parallel workers (0 = auto-detect CPU count)
|
|
batch_size: Batch size for embedding generation
|
|
|
|
Returns:
|
|
Dictionary with generation statistics
|
|
"""
|
|
logger.info(f"Processing index: {index_db_path}")
|
|
|
|
# Check existing chunks
|
|
existing_chunks = check_existing_chunks(index_db_path)
|
|
if existing_chunks > 0 and not force:
|
|
logger.warning(f"Index already has {existing_chunks} chunks")
|
|
logger.warning("Use --force to regenerate")
|
|
return {
|
|
"success": False,
|
|
"error": "Embeddings already exist",
|
|
"existing_chunks": existing_chunks,
|
|
}
|
|
|
|
if force and existing_chunks > 0:
|
|
logger.info(f"Force mode: clearing {existing_chunks} existing chunks")
|
|
try:
|
|
with sqlite3.connect(index_db_path) as conn:
|
|
conn.execute("DELETE FROM semantic_chunks")
|
|
conn.commit()
|
|
# Also remove HNSW index file
|
|
hnsw_path = index_db_path.parent / "_vectors.hnsw"
|
|
if hnsw_path.exists():
|
|
hnsw_path.unlink()
|
|
logger.info("Removed existing HNSW index")
|
|
except Exception as exc:
|
|
logger.error(f"Failed to clear existing data: {exc}")
|
|
|
|
# Import dependencies
|
|
try:
|
|
from codexlens.semantic.embedder import Embedder
|
|
from codexlens.semantic.vector_store import VectorStore
|
|
from codexlens.entities import SemanticChunk
|
|
except ImportError as exc:
|
|
return {
|
|
"success": False,
|
|
"error": f"Import failed: {exc}",
|
|
}
|
|
|
|
# Initialize components
|
|
try:
|
|
embedder = Embedder(profile=model_profile)
|
|
vector_store = VectorStore(index_db_path)
|
|
|
|
logger.info(f"Using model: {embedder.model_name}")
|
|
logger.info(f"Embedding dimension: {embedder.embedding_dim}")
|
|
except Exception as exc:
|
|
return {
|
|
"success": False,
|
|
"error": f"Failed to initialize components: {exc}",
|
|
}
|
|
|
|
# Read files from index
|
|
try:
|
|
with sqlite3.connect(index_db_path) as conn:
|
|
conn.row_factory = sqlite3.Row
|
|
cursor = conn.execute("SELECT full_path, content, language FROM files")
|
|
files = [
|
|
FileData(
|
|
full_path=row["full_path"],
|
|
content=row["content"],
|
|
language=row["language"] or "python"
|
|
)
|
|
for row in cursor.fetchall()
|
|
]
|
|
except Exception as exc:
|
|
return {
|
|
"success": False,
|
|
"error": f"Failed to read files: {exc}",
|
|
}
|
|
|
|
logger.info(f"Found {len(files)} files to process")
|
|
if len(files) == 0:
|
|
return {
|
|
"success": False,
|
|
"error": "No files found in index",
|
|
}
|
|
|
|
# Determine worker count
|
|
if workers <= 0:
|
|
workers = min(multiprocessing.cpu_count(), len(files), 8)
|
|
logger.info(f"Using {workers} worker(s) for parallel processing")
|
|
logger.info(f"Batch size for embeddings: {batch_size}")
|
|
|
|
start_time = time.time()
|
|
|
|
# Phase 1: Parallel chunking
|
|
logger.info("Phase 1: Chunking files...")
|
|
chunk_start = time.time()
|
|
|
|
all_chunks: List[ChunkData] = []
|
|
failed_files = []
|
|
|
|
# Prepare work items
|
|
work_items = [
|
|
(f.full_path, f.content, f.language, chunk_size)
|
|
for f in files
|
|
]
|
|
|
|
if workers == 1:
|
|
# Single-threaded for debugging
|
|
for i, item in enumerate(work_items, 1):
|
|
try:
|
|
chunks = process_file_worker(item)
|
|
all_chunks.extend(chunks)
|
|
if i % 100 == 0:
|
|
logger.info(f"Chunked {i}/{len(files)} files ({len(all_chunks)} chunks)")
|
|
except Exception as exc:
|
|
failed_files.append((item[0], str(exc)))
|
|
else:
|
|
# Parallel processing
|
|
with ProcessPoolExecutor(max_workers=workers) as executor:
|
|
futures = {
|
|
executor.submit(process_file_worker, item): item[0]
|
|
for item in work_items
|
|
}
|
|
|
|
completed = 0
|
|
for future in as_completed(futures):
|
|
file_path = futures[future]
|
|
completed += 1
|
|
try:
|
|
chunks = future.result()
|
|
all_chunks.extend(chunks)
|
|
if completed % 100 == 0:
|
|
logger.info(
|
|
f"Chunked {completed}/{len(files)} files "
|
|
f"({len(all_chunks)} chunks)"
|
|
)
|
|
except Exception as exc:
|
|
failed_files.append((file_path, str(exc)))
|
|
|
|
chunk_time = time.time() - chunk_start
|
|
logger.info(f"Chunking completed in {chunk_time:.1f}s: {len(all_chunks)} chunks")
|
|
|
|
if not all_chunks:
|
|
return {
|
|
"success": False,
|
|
"error": "No chunks created from files",
|
|
"files_processed": len(files) - len(failed_files),
|
|
"files_failed": len(failed_files),
|
|
}
|
|
|
|
# Phase 2: Batch embedding generation
|
|
logger.info("Phase 2: Generating embeddings...")
|
|
embed_start = time.time()
|
|
|
|
# Extract all content for batch embedding
|
|
all_contents = [c.content for c in all_chunks]
|
|
|
|
# Generate embeddings in batches
|
|
all_embeddings = []
|
|
for i in range(0, len(all_contents), batch_size):
|
|
batch_contents = all_contents[i:i + batch_size]
|
|
batch_embeddings = embedder.embed(batch_contents)
|
|
all_embeddings.extend(batch_embeddings)
|
|
|
|
progress = min(i + batch_size, len(all_contents))
|
|
if progress % (batch_size * 4) == 0 or progress == len(all_contents):
|
|
logger.info(f"Generated embeddings: {progress}/{len(all_contents)}")
|
|
|
|
embed_time = time.time() - embed_start
|
|
logger.info(f"Embedding completed in {embed_time:.1f}s")
|
|
|
|
# Phase 3: Batch database write
|
|
logger.info("Phase 3: Storing chunks...")
|
|
store_start = time.time()
|
|
|
|
# Create SemanticChunk objects with embeddings
|
|
semantic_chunks_with_paths = []
|
|
for chunk_data, embedding in zip(all_chunks, all_embeddings):
|
|
semantic_chunk = SemanticChunk(
|
|
content=chunk_data.content,
|
|
metadata=chunk_data.metadata,
|
|
)
|
|
semantic_chunk.embedding = embedding
|
|
semantic_chunks_with_paths.append((semantic_chunk, chunk_data.file_path))
|
|
|
|
# Batch write (handles both SQLite and HNSW)
|
|
write_batch_size = 1000
|
|
total_stored = 0
|
|
for i in range(0, len(semantic_chunks_with_paths), write_batch_size):
|
|
batch = semantic_chunks_with_paths[i:i + write_batch_size]
|
|
vector_store.add_chunks_batch(batch)
|
|
total_stored += len(batch)
|
|
if total_stored % 5000 == 0 or total_stored == len(semantic_chunks_with_paths):
|
|
logger.info(f"Stored: {total_stored}/{len(semantic_chunks_with_paths)} chunks")
|
|
|
|
store_time = time.time() - store_start
|
|
logger.info(f"Storage completed in {store_time:.1f}s")
|
|
|
|
elapsed_time = time.time() - start_time
|
|
|
|
# Generate summary
|
|
logger.info("=" * 60)
|
|
logger.info(f"Completed in {elapsed_time:.1f}s")
|
|
logger.info(f" Chunking: {chunk_time:.1f}s")
|
|
logger.info(f" Embedding: {embed_time:.1f}s")
|
|
logger.info(f" Storage: {store_time:.1f}s")
|
|
logger.info(f"Total chunks created: {len(all_chunks)}")
|
|
logger.info(f"Files processed: {len(files) - len(failed_files)}/{len(files)}")
|
|
if vector_store.ann_available:
|
|
logger.info(f"HNSW index vectors: {vector_store.ann_count}")
|
|
if failed_files:
|
|
logger.warning(f"Failed files: {len(failed_files)}")
|
|
for file_path, error in failed_files[:5]: # Show first 5 failures
|
|
logger.warning(f" {file_path}: {error}")
|
|
|
|
return {
|
|
"success": True,
|
|
"chunks_created": len(all_chunks),
|
|
"files_processed": len(files) - len(failed_files),
|
|
"files_failed": len(failed_files),
|
|
"elapsed_time": elapsed_time,
|
|
"chunk_time": chunk_time,
|
|
"embed_time": embed_time,
|
|
"store_time": store_time,
|
|
"ann_vectors": vector_store.ann_count if vector_store.ann_available else 0,
|
|
}
|
|
|
|
|
|
def find_index_databases(scan_dir: Path) -> List[Path]:
|
|
"""Find all _index.db files in directory tree."""
|
|
logger.info(f"Scanning for indexes in: {scan_dir}")
|
|
index_files = list(scan_dir.rglob("_index.db"))
|
|
logger.info(f"Found {len(index_files)} index databases")
|
|
return index_files
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description="Generate vector embeddings for CodexLens indexes",
|
|
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
epilog=__doc__
|
|
)
|
|
|
|
parser.add_argument(
|
|
"index_path",
|
|
type=Path,
|
|
help="Path to _index.db file or directory to scan"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--scan",
|
|
action="store_true",
|
|
help="Scan directory tree for all _index.db files"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--model",
|
|
type=str,
|
|
default="code",
|
|
choices=["fast", "code", "multilingual", "balanced"],
|
|
help="Embedding model profile (default: code)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--chunk-size",
|
|
type=int,
|
|
default=2000,
|
|
help="Maximum chunk size in characters (default: 2000)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--workers",
|
|
type=int,
|
|
default=0,
|
|
help="Number of parallel workers for chunking (default: auto-detect CPU count)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--batch-size",
|
|
type=int,
|
|
default=256,
|
|
help="Batch size for embedding generation (default: 256)"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--force",
|
|
action="store_true",
|
|
help="Regenerate embeddings even if they exist"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--verbose",
|
|
"-v",
|
|
action="store_true",
|
|
help="Enable verbose logging"
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Configure logging level
|
|
if args.verbose:
|
|
logging.getLogger().setLevel(logging.DEBUG)
|
|
|
|
# Check dependencies
|
|
if not check_dependencies():
|
|
sys.exit(1)
|
|
|
|
# Resolve path
|
|
index_path = args.index_path.expanduser().resolve()
|
|
|
|
if not index_path.exists():
|
|
logger.error(f"Path not found: {index_path}")
|
|
sys.exit(1)
|
|
|
|
# Determine if scanning or single file
|
|
if args.scan or index_path.is_dir():
|
|
# Scan mode
|
|
if index_path.is_file():
|
|
logger.error("--scan requires a directory path")
|
|
sys.exit(1)
|
|
|
|
index_files = find_index_databases(index_path)
|
|
if not index_files:
|
|
logger.error(f"No index databases found in: {index_path}")
|
|
sys.exit(1)
|
|
|
|
# Process each index
|
|
total_chunks = 0
|
|
successful = 0
|
|
for idx, index_file in enumerate(index_files, 1):
|
|
logger.info(f"\n{'='*60}")
|
|
logger.info(f"Processing index {idx}/{len(index_files)}")
|
|
logger.info(f"{'='*60}")
|
|
|
|
result = generate_embeddings_for_index(
|
|
index_file,
|
|
model_profile=args.model,
|
|
force=args.force,
|
|
chunk_size=args.chunk_size,
|
|
workers=args.workers,
|
|
batch_size=args.batch_size,
|
|
)
|
|
|
|
if result["success"]:
|
|
total_chunks += result["chunks_created"]
|
|
successful += 1
|
|
|
|
# Final summary
|
|
logger.info(f"\n{'='*60}")
|
|
logger.info("BATCH PROCESSING COMPLETE")
|
|
logger.info(f"{'='*60}")
|
|
logger.info(f"Indexes processed: {successful}/{len(index_files)}")
|
|
logger.info(f"Total chunks created: {total_chunks}")
|
|
|
|
else:
|
|
# Single index mode
|
|
if not index_path.name.endswith("_index.db"):
|
|
logger.error("File must be named '_index.db'")
|
|
sys.exit(1)
|
|
|
|
result = generate_embeddings_for_index(
|
|
index_path,
|
|
model_profile=args.model,
|
|
force=args.force,
|
|
chunk_size=args.chunk_size,
|
|
workers=args.workers,
|
|
batch_size=args.batch_size,
|
|
)
|
|
|
|
if not result["success"]:
|
|
logger.error(f"Failed: {result.get('error', 'Unknown error')}")
|
|
sys.exit(1)
|
|
|
|
logger.info("\n✓ Embeddings generation complete!")
|
|
logger.info("\nYou can now use vector search:")
|
|
logger.info(" codexlens search 'your query' --mode pure-vector")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|