mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-06 01:54:11 +08:00
- Added ANNIndex class for approximate nearest neighbor search using HNSW. - Integrated ANN index with VectorStore for enhanced search capabilities. - Updated test suite for ANN index, including tests for adding, searching, saving, and loading vectors. - Modified existing tests to accommodate changes in search performance expectations. - Improved error handling for file operations in tests to ensure compatibility with Windows file locks. - Adjusted hybrid search performance assertions for increased stability in CI environments.
424 lines
14 KiB
Python
424 lines
14 KiB
Python
"""Tests for ANN (Approximate Nearest Neighbor) index using HNSW."""
|
|
|
|
import tempfile
|
|
from pathlib import Path
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
|
|
# Skip all tests if semantic dependencies not available
|
|
pytest.importorskip("numpy")
|
|
|
|
|
|
def _hnswlib_available() -> bool:
|
|
"""Check if hnswlib is available."""
|
|
try:
|
|
import hnswlib
|
|
return True
|
|
except ImportError:
|
|
return False
|
|
|
|
|
|
class TestANNIndex:
|
|
"""Test suite for ANNIndex class."""
|
|
|
|
@pytest.fixture
|
|
def temp_db(self):
|
|
"""Create a temporary database file."""
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
yield Path(tmpdir) / "_index.db"
|
|
|
|
@pytest.fixture
|
|
def sample_vectors(self):
|
|
"""Generate sample vectors for testing."""
|
|
import numpy as np
|
|
np.random.seed(42)
|
|
# 100 vectors of dimension 384 (matches fast model)
|
|
return np.random.randn(100, 384).astype(np.float32)
|
|
|
|
@pytest.fixture
|
|
def sample_ids(self):
|
|
"""Generate sample IDs."""
|
|
return list(range(1, 101))
|
|
|
|
def test_import_check(self):
|
|
"""Test that HNSWLIB_AVAILABLE flag is set correctly."""
|
|
try:
|
|
from codexlens.semantic.ann_index import HNSWLIB_AVAILABLE
|
|
# Should be True if hnswlib is installed, False otherwise
|
|
assert isinstance(HNSWLIB_AVAILABLE, bool)
|
|
except ImportError:
|
|
pytest.skip("ann_index module not available")
|
|
|
|
@pytest.mark.skipif(
|
|
not _hnswlib_available(),
|
|
reason="hnswlib not installed"
|
|
)
|
|
def test_create_index(self, temp_db):
|
|
"""Test creating a new ANN index."""
|
|
from codexlens.semantic.ann_index import ANNIndex
|
|
|
|
index = ANNIndex(temp_db, dim=384)
|
|
assert index.dim == 384
|
|
assert index.count() == 0
|
|
assert not index.is_loaded
|
|
|
|
@pytest.mark.skipif(
|
|
not _hnswlib_available(),
|
|
reason="hnswlib not installed"
|
|
)
|
|
def test_add_vectors(self, temp_db, sample_vectors, sample_ids):
|
|
"""Test adding vectors to the index."""
|
|
from codexlens.semantic.ann_index import ANNIndex
|
|
|
|
index = ANNIndex(temp_db, dim=384)
|
|
index.add_vectors(sample_ids, sample_vectors)
|
|
|
|
assert index.count() == 100
|
|
assert index.is_loaded
|
|
|
|
@pytest.mark.skipif(
|
|
not _hnswlib_available(),
|
|
reason="hnswlib not installed"
|
|
)
|
|
def test_search(self, temp_db, sample_vectors, sample_ids):
|
|
"""Test searching for similar vectors."""
|
|
from codexlens.semantic.ann_index import ANNIndex
|
|
|
|
index = ANNIndex(temp_db, dim=384)
|
|
index.add_vectors(sample_ids, sample_vectors)
|
|
|
|
# Search for the first vector - should find itself
|
|
query = sample_vectors[0]
|
|
ids, distances = index.search(query, top_k=5)
|
|
|
|
assert len(ids) == 5
|
|
assert len(distances) == 5
|
|
# First result should be the query vector itself (or very close)
|
|
assert ids[0] == 1 # ID of first vector
|
|
assert distances[0] < 0.01 # Very small distance (almost identical)
|
|
|
|
@pytest.mark.skipif(
|
|
not _hnswlib_available(),
|
|
reason="hnswlib not installed"
|
|
)
|
|
def test_save_and_load(self, temp_db, sample_vectors, sample_ids):
|
|
"""Test saving and loading index from disk."""
|
|
from codexlens.semantic.ann_index import ANNIndex
|
|
|
|
# Create and save index
|
|
index1 = ANNIndex(temp_db, dim=384)
|
|
index1.add_vectors(sample_ids, sample_vectors)
|
|
index1.save()
|
|
|
|
# Check that file was created (new naming: {db_stem}_vectors.hnsw)
|
|
hnsw_path = temp_db.parent / f"{temp_db.stem}_vectors.hnsw"
|
|
assert hnsw_path.exists()
|
|
|
|
# Load in new instance
|
|
index2 = ANNIndex(temp_db, dim=384)
|
|
loaded = index2.load()
|
|
|
|
assert loaded is True
|
|
assert index2.count() == 100
|
|
assert index2.is_loaded
|
|
|
|
# Verify search still works
|
|
query = sample_vectors[0]
|
|
ids, distances = index2.search(query, top_k=5)
|
|
assert ids[0] == 1
|
|
|
|
@pytest.mark.skipif(
|
|
not _hnswlib_available(),
|
|
reason="hnswlib not installed"
|
|
)
|
|
def test_load_nonexistent(self, temp_db):
|
|
"""Test loading when index file doesn't exist."""
|
|
from codexlens.semantic.ann_index import ANNIndex
|
|
|
|
index = ANNIndex(temp_db, dim=384)
|
|
loaded = index.load()
|
|
|
|
assert loaded is False
|
|
assert not index.is_loaded
|
|
|
|
@pytest.mark.skipif(
|
|
not _hnswlib_available(),
|
|
reason="hnswlib not installed"
|
|
)
|
|
def test_remove_vectors(self, temp_db, sample_vectors, sample_ids):
|
|
"""Test removing vectors from the index."""
|
|
from codexlens.semantic.ann_index import ANNIndex
|
|
|
|
index = ANNIndex(temp_db, dim=384)
|
|
index.add_vectors(sample_ids, sample_vectors)
|
|
|
|
# Remove first 10 vectors
|
|
index.remove_vectors(list(range(1, 11)))
|
|
|
|
# Search for removed vector - should not be in results
|
|
query = sample_vectors[0]
|
|
ids, distances = index.search(query, top_k=5)
|
|
|
|
# ID 1 should not be in results (soft deleted)
|
|
assert 1 not in ids
|
|
|
|
@pytest.mark.skipif(
|
|
not _hnswlib_available(),
|
|
reason="hnswlib not installed"
|
|
)
|
|
def test_incremental_add(self, temp_db):
|
|
"""Test adding vectors incrementally."""
|
|
import numpy as np
|
|
from codexlens.semantic.ann_index import ANNIndex
|
|
|
|
index = ANNIndex(temp_db, dim=384)
|
|
|
|
# Add first batch
|
|
vectors1 = np.random.randn(50, 384).astype(np.float32)
|
|
index.add_vectors(list(range(1, 51)), vectors1)
|
|
assert index.count() == 50
|
|
|
|
# Add second batch
|
|
vectors2 = np.random.randn(50, 384).astype(np.float32)
|
|
index.add_vectors(list(range(51, 101)), vectors2)
|
|
assert index.count() == 100
|
|
|
|
@pytest.mark.skipif(
|
|
not _hnswlib_available(),
|
|
reason="hnswlib not installed"
|
|
)
|
|
def test_search_empty_index(self, temp_db):
|
|
"""Test searching an empty index."""
|
|
import numpy as np
|
|
from codexlens.semantic.ann_index import ANNIndex
|
|
|
|
index = ANNIndex(temp_db, dim=384)
|
|
query = np.random.randn(384).astype(np.float32)
|
|
|
|
ids, distances = index.search(query, top_k=5)
|
|
|
|
assert ids == []
|
|
assert distances == []
|
|
|
|
@pytest.mark.skipif(
|
|
not _hnswlib_available(),
|
|
reason="hnswlib not installed"
|
|
)
|
|
def test_invalid_dimension(self, temp_db, sample_vectors, sample_ids):
|
|
"""Test adding vectors with wrong dimension."""
|
|
import numpy as np
|
|
from codexlens.semantic.ann_index import ANNIndex
|
|
|
|
index = ANNIndex(temp_db, dim=384)
|
|
|
|
# Try to add vectors with wrong dimension
|
|
wrong_vectors = np.random.randn(10, 768).astype(np.float32)
|
|
with pytest.raises(ValueError, match="dimension"):
|
|
index.add_vectors(list(range(1, 11)), wrong_vectors)
|
|
|
|
@pytest.mark.skipif(
|
|
not _hnswlib_available(),
|
|
reason="hnswlib not installed"
|
|
)
|
|
def test_auto_resize(self, temp_db):
|
|
"""Test that index automatically resizes when capacity is exceeded."""
|
|
import numpy as np
|
|
from codexlens.semantic.ann_index import ANNIndex
|
|
|
|
index = ANNIndex(temp_db, dim=384)
|
|
# Override initial capacity to test resize
|
|
index._max_elements = 100
|
|
|
|
# Add more vectors than initial capacity
|
|
vectors = np.random.randn(150, 384).astype(np.float32)
|
|
index.add_vectors(list(range(1, 151)), vectors)
|
|
|
|
assert index.count() == 150
|
|
assert index._max_elements >= 150
|
|
|
|
|
|
class TestVectorStoreWithANN:
|
|
"""Test VectorStore integration with ANN index."""
|
|
|
|
@pytest.fixture
|
|
def temp_db(self):
|
|
"""Create a temporary database file."""
|
|
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdir:
|
|
yield Path(tmpdir) / "_index.db"
|
|
|
|
@pytest.fixture
|
|
def sample_chunks(self):
|
|
"""Create sample semantic chunks with embeddings."""
|
|
import numpy as np
|
|
from codexlens.entities import SemanticChunk
|
|
|
|
np.random.seed(42)
|
|
chunks = []
|
|
for i in range(10):
|
|
chunk = SemanticChunk(
|
|
content=f"def function_{i}(): pass",
|
|
metadata={"symbol_name": f"function_{i}", "symbol_kind": "function"},
|
|
)
|
|
chunk.embedding = np.random.randn(384).astype(np.float32).tolist()
|
|
chunks.append(chunk)
|
|
return chunks
|
|
|
|
def test_vector_store_with_ann(self, temp_db, sample_chunks):
|
|
"""Test VectorStore using ANN index for search."""
|
|
from codexlens.semantic.vector_store import VectorStore, HNSWLIB_AVAILABLE
|
|
|
|
store = VectorStore(temp_db)
|
|
|
|
# Add chunks
|
|
ids = store.add_chunks(sample_chunks, "test.py")
|
|
assert len(ids) == 10
|
|
|
|
# Check ANN status
|
|
if HNSWLIB_AVAILABLE:
|
|
assert store.ann_available or store.ann_count >= 0
|
|
|
|
# Search
|
|
query_embedding = sample_chunks[0].embedding
|
|
results = store.search_similar(query_embedding, top_k=5)
|
|
|
|
assert len(results) <= 5
|
|
if results:
|
|
# First result should have high similarity
|
|
assert results[0].score > 0.9
|
|
|
|
def test_vector_store_rebuild_ann(self, temp_db, sample_chunks):
|
|
"""Test rebuilding ANN index from SQLite data."""
|
|
from codexlens.semantic.vector_store import VectorStore, HNSWLIB_AVAILABLE
|
|
|
|
if not HNSWLIB_AVAILABLE:
|
|
pytest.skip("hnswlib not installed")
|
|
|
|
store = VectorStore(temp_db)
|
|
|
|
# Add chunks
|
|
store.add_chunks(sample_chunks, "test.py")
|
|
|
|
# Rebuild ANN index
|
|
count = store.rebuild_ann_index()
|
|
assert count == 10
|
|
|
|
# Verify search works
|
|
query_embedding = sample_chunks[0].embedding
|
|
results = store.search_similar(query_embedding, top_k=5)
|
|
assert len(results) > 0
|
|
|
|
def test_vector_store_delete_updates_ann(self, temp_db, sample_chunks):
|
|
"""Test that deleting chunks updates ANN index."""
|
|
from codexlens.semantic.vector_store import VectorStore, HNSWLIB_AVAILABLE
|
|
|
|
if not HNSWLIB_AVAILABLE:
|
|
pytest.skip("hnswlib not installed")
|
|
|
|
store = VectorStore(temp_db)
|
|
|
|
# Add chunks for two files
|
|
store.add_chunks(sample_chunks[:5], "file1.py")
|
|
store.add_chunks(sample_chunks[5:], "file2.py")
|
|
|
|
initial_count = store.count_chunks()
|
|
assert initial_count == 10
|
|
|
|
# Delete one file's chunks
|
|
deleted = store.delete_file_chunks("file1.py")
|
|
assert deleted == 5
|
|
|
|
# Verify count
|
|
assert store.count_chunks() == 5
|
|
|
|
def test_vector_store_batch_add(self, temp_db, sample_chunks):
|
|
"""Test batch adding chunks from multiple files."""
|
|
from codexlens.semantic.vector_store import VectorStore
|
|
|
|
store = VectorStore(temp_db)
|
|
|
|
# Prepare chunks with paths
|
|
chunks_with_paths = [
|
|
(chunk, f"file{i % 3}.py")
|
|
for i, chunk in enumerate(sample_chunks)
|
|
]
|
|
|
|
# Batch add
|
|
ids = store.add_chunks_batch(chunks_with_paths)
|
|
assert len(ids) == 10
|
|
|
|
# Verify
|
|
assert store.count_chunks() == 10
|
|
|
|
def test_vector_store_fallback_search(self, temp_db, sample_chunks):
|
|
"""Test that search falls back to brute-force when ANN unavailable."""
|
|
from codexlens.semantic.vector_store import VectorStore
|
|
|
|
store = VectorStore(temp_db)
|
|
store.add_chunks(sample_chunks, "test.py")
|
|
|
|
# Force disable ANN
|
|
store._ann_index = None
|
|
|
|
# Search should still work (brute-force fallback)
|
|
query_embedding = sample_chunks[0].embedding
|
|
results = store.search_similar(query_embedding, top_k=5)
|
|
|
|
assert len(results) > 0
|
|
assert results[0].score > 0.9
|
|
|
|
|
|
class TestSearchAccuracy:
|
|
"""Test search accuracy comparing ANN vs brute-force."""
|
|
|
|
@pytest.fixture
|
|
def temp_db(self):
|
|
"""Create a temporary database file."""
|
|
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdir:
|
|
yield Path(tmpdir) / "_index.db"
|
|
|
|
@pytest.mark.skipif(
|
|
not _hnswlib_available(),
|
|
reason="hnswlib not installed"
|
|
)
|
|
def test_ann_vs_brute_force_recall(self, temp_db):
|
|
"""Test that ANN search has high recall compared to brute-force."""
|
|
import numpy as np
|
|
from codexlens.entities import SemanticChunk
|
|
from codexlens.semantic.vector_store import VectorStore
|
|
|
|
np.random.seed(42)
|
|
|
|
# Create larger dataset
|
|
chunks = []
|
|
for i in range(100):
|
|
chunk = SemanticChunk(
|
|
content=f"code block {i}",
|
|
metadata={"chunk_id": i},
|
|
)
|
|
chunk.embedding = np.random.randn(384).astype(np.float32).tolist()
|
|
chunks.append(chunk)
|
|
|
|
store = VectorStore(temp_db)
|
|
store.add_chunks(chunks, "test.py")
|
|
|
|
# Get brute-force results
|
|
store._ann_index = None # Force brute-force
|
|
store._invalidate_cache() # Clear cache to force refresh
|
|
query = chunks[0].embedding
|
|
bf_results = store.search_similar(query, top_k=10)
|
|
# Use chunk_id from metadata for comparison (more reliable than path+score)
|
|
bf_chunk_ids = {r.metadata.get("chunk_id") for r in bf_results}
|
|
|
|
# Rebuild ANN and get ANN results
|
|
store.rebuild_ann_index()
|
|
ann_results = store.search_similar(query, top_k=10)
|
|
ann_chunk_ids = {r.metadata.get("chunk_id") for r in ann_results}
|
|
|
|
# Calculate recall (how many brute-force results are in ANN results)
|
|
# ANN should find at least 80% of the same results
|
|
overlap = len(bf_chunk_ids & ann_chunk_ids)
|
|
recall = overlap / len(bf_chunk_ids) if bf_chunk_ids else 1.0
|
|
|
|
assert recall >= 0.8, f"ANN recall too low: {recall} (overlap: {overlap}, bf: {bf_chunk_ids}, ann: {ann_chunk_ids})"
|