Files
Claude-Code-Workflow/codex-lens/pyproject.toml

67 lines
1.5 KiB
TOML

[build-system]
requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta"
[project]
name = "codex-lens"
version = "0.1.0"
description = "CodexLens multi-modal code analysis platform"
readme = "README.md"
requires-python = ">=3.10"
license = { text = "MIT" }
authors = [
{ name = "CodexLens contributors" }
]
dependencies = [
"typer>=0.9",
"rich>=13",
"pydantic>=2.0",
"tree-sitter>=0.20",
"tree-sitter-python>=0.25",
"tree-sitter-javascript>=0.25",
"tree-sitter-typescript>=0.23",
"pathspec>=0.11",
]
[project.optional-dependencies]
# Semantic search using fastembed (ONNX-based, lightweight ~200MB)
semantic = [
"numpy>=1.24",
"fastembed>=0.2",
"hnswlib>=0.8.0",
]
# GPU acceleration for semantic search (NVIDIA CUDA)
# Install with: pip install codexlens[semantic-gpu]
semantic-gpu = [
"numpy>=1.24",
"fastembed>=0.2",
"hnswlib>=0.8.0",
"onnxruntime-gpu>=1.15.0", # CUDA support
]
# GPU acceleration for Windows (DirectML - supports NVIDIA/AMD/Intel)
# Install with: pip install codexlens[semantic-directml]
semantic-directml = [
"numpy>=1.24",
"fastembed>=0.2",
"hnswlib>=0.8.0",
"onnxruntime-directml>=1.15.0", # DirectML support
]
# Encoding detection for non-UTF8 files
encoding = [
"chardet>=5.0",
]
# Full features including tiktoken for accurate token counting
full = [
"tiktoken>=0.5.0",
]
[project.urls]
Homepage = "https://github.com/openai/codex-lens"
[tool.setuptools]
package-dir = { "" = "src" }