diff --git a/advanced-ai-agents/.claude-plugin/marketplace.json b/advanced-ai-agents/.claude-plugin/marketplace.json
deleted file mode 100644
index 3a92cce..0000000
--- a/advanced-ai-agents/.claude-plugin/marketplace.json
+++ /dev/null
@@ -1,26 +0,0 @@
-{
- "name": "advanced-ai-agents",
- "source": "./",
- "description": "Advanced AI agent for complex problem solving and deep analysis with GPT-5 integration",
- "version": "1.0.0",
- "author": {
- "name": "Claude Code Dev Workflows",
- "url": "https://github.com/cexll/myclaude"
- },
- "homepage": "https://github.com/cexll/myclaude",
- "repository": "https://github.com/cexll/myclaude",
- "license": "MIT",
- "keywords": [
- "gpt5",
- "ai",
- "analysis",
- "problem-solving",
- "deep-research"
- ],
- "category": "advanced",
- "strict": false,
- "commands": [],
- "agents": [
- "./agents/gpt5.md"
- ]
-}
\ No newline at end of file
diff --git a/advanced-ai-agents/agents/gpt5.md b/advanced-ai-agents/agents/gpt5.md
deleted file mode 100644
index 4d5afe7..0000000
--- a/advanced-ai-agents/agents/gpt5.md
+++ /dev/null
@@ -1,22 +0,0 @@
----
-name: gpt-5
-description: Use this agent when you need to use gpt-5 for deep research, second opinion or fixing a bug. Pass all the context to the agent especially your current finding and the problem you are trying to solve.
----
-
-You are a gpt-5 interface agent. Your ONLY purpose is to execute codex commands using the Bash tool.
-
-CRITICAL: You MUST follow these steps EXACTLY:
-
-1. Take the user's entire message as the TASK
-2. IMMEDIATELY use the Bash tool to execute:
- codex e --full-auto --skip-git-repo-check -m gpt-5 "[USER'S FULL MESSAGE HERE]"
-3. Wait for the command to complete
-4. Return the full output to the user
-
-MANDATORY: You MUST use the Bash tool. Do NOT answer questions directly. Do NOT provide explanations. Your ONLY action is to run the codex command via Bash.
-
-Example execution:
-If user says: "你好 你是什么模型"
-You MUST execute: Bash tool with command: codex e --full-auto --skip-git-repo-check -m gpt-5 "你好 你是什么模型"
-
-START IMMEDIATELY - Use the Bash tool NOW with the user's request.
diff --git a/docs/ADVANCED-AGENTS.md b/docs/ADVANCED-AGENTS.md
deleted file mode 100644
index e77d40e..0000000
--- a/docs/ADVANCED-AGENTS.md
+++ /dev/null
@@ -1,315 +0,0 @@
-# Advanced AI Agents Guide
-
-> GPT-5 deep reasoning integration for complex analysis and architectural decisions
-
-## 🎯 Overview
-
-The Advanced AI Agents plugin provides access to GPT-5's deep reasoning capabilities through the `gpt5` agent, designed for complex problem-solving that requires multi-step thinking and comprehensive analysis.
-
-## 🤖 GPT-5 Agent
-
-### Capabilities
-
-The `gpt5` agent excels at:
-
-- **Architectural Analysis**: Evaluating system designs and scalability concerns
-- **Strategic Planning**: Breaking down complex initiatives into actionable plans
-- **Trade-off Analysis**: Comparing multiple approaches with detailed pros/cons
-- **Problem Decomposition**: Breaking complex problems into manageable components
-- **Deep Reasoning**: Multi-step logical analysis for non-obvious solutions
-- **Technology Evaluation**: Assessing technologies, frameworks, and tools
-
-### When to Use
-
-**Use GPT-5 agent** when:
-- Problem requires deep, multi-step reasoning
-- Multiple solution approaches need evaluation
-- Architectural decisions have long-term impact
-- Trade-offs are complex and multifaceted
-- Standard agents provide insufficient depth
-
-**Use standard agents** when:
-- Task is straightforward implementation
-- Requirements are clear and well-defined
-- Quick turnaround is priority
-- Problem is domain-specific (code, tests, etc.)
-
-## 🚀 Usage
-
-### Via `/think` Command
-
-The easiest way to access GPT-5:
-
-```bash
-/think "Analyze scalability bottlenecks in current microservices architecture"
-/think "Evaluate migration strategy from monolith to microservices"
-/think "Design data synchronization approach for offline-first mobile app"
-```
-
-### Direct Agent Invocation
-
-For advanced usage:
-
-```bash
-# Use @gpt5 to invoke the agent directly
-@gpt5 "Complex architectural question or analysis request"
-```
-
-## 💡 Example Use Cases
-
-### 1. Architecture Evaluation
-
-```bash
-/think "Current system uses REST API with polling for real-time updates.
-Evaluate whether to migrate to WebSocket, Server-Sent Events, or GraphQL
-subscriptions. Consider: team experience, existing infrastructure, client
-support, scalability, and implementation effort."
-```
-
-**GPT-5 provides**:
-- Detailed analysis of each option
-- Pros and cons for your specific context
-- Migration complexity assessment
-- Performance implications
-- Recommended approach with justification
-
-### 2. Migration Strategy
-
-```bash
-/think "Plan migration from PostgreSQL to multi-region distributed database.
-System has 50M users, 200M rows, 1000 req/sec. Must maintain 99.9% uptime.
-What's the safest migration path?"
-```
-
-**GPT-5 provides**:
-- Step-by-step migration plan
-- Risk assessment for each phase
-- Rollback strategies
-- Data consistency approaches
-- Timeline estimation
-
-### 3. Problem Decomposition
-
-```bash
-/think "Design a recommendation engine that learns user preferences, handles
-cold start, provides explainable results, and scales to 10M users. Break this
-down into implementation phases with clear milestones."
-```
-
-**GPT-5 provides**:
-- Problem breakdown into components
-- Phased implementation plan
-- Technical approach for each phase
-- Dependencies between phases
-- Success criteria and metrics
-
-### 4. Technology Selection
-
-```bash
-/think "Choosing between Redis, Memcached, and Hazelcast for distributed
-caching. System needs: persistence, pub/sub, clustering, and complex data
-structures. Existing stack: Java, Kubernetes, AWS."
-```
-
-**GPT-5 provides**:
-- Comparison matrix across requirements
-- Integration considerations
-- Operational complexity analysis
-- Cost implications
-- Recommendation with rationale
-
-### 5. Performance Optimization
-
-```bash
-/think "API response time increased from 100ms to 800ms after scaling from
-100 to 10,000 users. Database queries look optimized. What are the likely
-bottlenecks and systematic approach to identify them?"
-```
-
-**GPT-5 provides**:
-- Hypothesis generation (N+1 queries, connection pooling, etc.)
-- Systematic debugging approach
-- Profiling strategy
-- Likely root causes ranked by probability
-- Optimization recommendations
-
-## 🎨 Integration with BMAD
-
-### Enhanced Code Review
-
-BMAD's `bmad-review` agent can optionally use GPT-5 for deeper analysis:
-
-**Configuration**:
-```bash
-# Enable enhanced review mode (via environment or BMAD config)
-BMAD_REVIEW_MODE=enhanced /bmad-pilot "feature description"
-```
-
-**What changes**:
-- Standard review: Fast, focuses on code quality and obvious issues
-- Enhanced review: Deep analysis including:
- - Architectural impact
- - Security implications
- - Performance considerations
- - Scalability concerns
- - Design pattern appropriateness
-
-### Architecture Phase Support
-
-Use `/think` during BMAD architecture phase:
-
-```bash
-# Start BMAD workflow
-/bmad-pilot "E-commerce platform with real-time inventory"
-
-# During Architecture phase, get deep analysis
-/think "Evaluate architecture approaches for real-time inventory
-synchronization across warehouses, online store, and mobile apps"
-
-# Continue with BMAD using insights
-```
-
-## 📋 Best Practices
-
-### 1. Provide Complete Context
-
-**❌ Insufficient**:
-```bash
-/think "Should we use microservices?"
-```
-
-**✅ Complete**:
-```bash
-/think "Current monolith: 100K LOC, 8 developers, 50K users, 200ms avg
-response time. Pain points: slow deployments (1hr), difficult to scale
-components independently. Should we migrate to microservices? What's the
-ROI and risk?"
-```
-
-### 2. Ask Specific Questions
-
-**❌ Too broad**:
-```bash
-/think "How to build a scalable system?"
-```
-
-**✅ Specific**:
-```bash
-/think "Current system handles 1K req/sec. Need to scale to 10K. Bottleneck
-is database writes. Evaluate: sharding, read replicas, CQRS, or caching.
-Database: PostgreSQL, stack: Node.js, deployment: Kubernetes."
-```
-
-### 3. Include Constraints
-
-Always mention:
-- Team skills and size
-- Timeline and budget
-- Existing infrastructure
-- Business requirements
-- Technical constraints
-
-**Example**:
-```bash
-/think "Design real-time chat system. Constraints: team of 3 backend
-developers (Node.js), 6-month timeline, AWS deployment, must integrate
-with existing REST API, budget for managed services OK."
-```
-
-### 4. Request Specific Outputs
-
-Tell GPT-5 what format you need:
-
-```bash
-/think "Compare Kafka vs RabbitMQ for event streaming.
-Provide: comparison table, recommendation, migration complexity from current
-RabbitMQ setup, and estimated effort in developer-weeks."
-```
-
-### 5. Iterate and Refine
-
-Follow up for deeper analysis:
-
-```bash
-# Initial question
-/think "Evaluate caching strategies for user profile API"
-
-# Follow-up based on response
-/think "You recommended Redis with write-through caching. How to handle
-cache invalidation when user updates profile from mobile app?"
-```
-
-## 🔧 Technical Details
-
-### Sequential Thinking
-
-GPT-5 agent uses sequential thinking for complex problems:
-
-1. **Problem Understanding**: Clarify requirements and constraints
-2. **Hypothesis Generation**: Identify possible solutions
-3. **Analysis**: Evaluate each option systematically
-4. **Trade-off Assessment**: Compare pros/cons
-5. **Recommendation**: Provide justified conclusion
-
-### Reasoning Transparency
-
-GPT-5 shows its thinking process:
-- Assumptions made
-- Factors considered
-- Why certain options were eliminated
-- Confidence level in recommendations
-
-## 🎯 Comparison: GPT-5 vs Standard Agents
-
-| Aspect | GPT-5 Agent | Standard Agents |
-|--------|-------------|-----------------|
-| **Depth** | Deep, multi-step reasoning | Focused, domain-specific |
-| **Speed** | Slower (comprehensive analysis) | Faster (direct implementation) |
-| **Use Case** | Strategic decisions, architecture | Implementation, coding, testing |
-| **Output** | Analysis, recommendations, plans | Code, tests, documentation |
-| **Best For** | Complex problems, trade-offs | Clear tasks, defined scope |
-| **Invocation** | `/think` or `@gpt5` | `/code`, `/test`, etc. |
-
-## 📚 Related Documentation
-
-- **[BMAD Workflow](BMAD-WORKFLOW.md)** - Integration with full agile workflow
-- **[Development Commands](DEVELOPMENT-COMMANDS.md)** - Standard command reference
-- **[Quick Start Guide](QUICK-START.md)** - Get started quickly
-
-## 💡 Advanced Patterns
-
-### Pre-Implementation Analysis
-
-```bash
-# 1. Deep analysis with GPT-5
-/think "Design approach for X with constraints Y and Z"
-
-# 2. Use analysis in BMAD workflow
-/bmad-pilot "Implement X based on approach from analysis"
-```
-
-### Architecture Validation
-
-```bash
-# 1. Get initial architecture from BMAD
-/bmad-pilot "Feature X" # Generates 02-system-architecture.md
-
-# 2. Validate with GPT-5
-/think "Review architecture in .claude/specs/feature-x/02-system-architecture.md
-Evaluate for scalability, security, and maintainability"
-
-# 3. Refine architecture based on feedback
-```
-
-### Decision Documentation
-
-```bash
-# Use GPT-5 to document architectural decisions
-/think "Document decision to use Event Sourcing for order management.
-Include: context, options considered, decision rationale, consequences,
-and format as Architecture Decision Record (ADR)"
-```
-
----
-
-**Advanced AI Agents** - Deep reasoning for complex problems that require comprehensive analysis.
diff --git a/output-styles/bmad.md b/output-styles/bmad.md
deleted file mode 100644
index 9da93b5..0000000
--- a/output-styles/bmad.md
+++ /dev/null
@@ -1,121 +0,0 @@
----
-name: BMAD
-description:
- Orchestrate BMAD (PO → Architect → SM → Dev → QA).
- PO/Architect/SM run locally; Dev/QA via bash Codex CLI. Explicit approval gates and repo-aware artifacts.
----
-
-# BMAD Output Style
-
-
-You are the BMAD Orchestrator coordinating a full-stack Agile workflow with five roles: Product Owner (PO), System Architect, Scrum Master (SM), Developer (Dev), and QA. You do not overtake their domain work; instead, you guide the flow, ask targeted questions, enforce approval gates, and save outputs when confirmed.
-
-PO/Architect/SM phases run locally as interactive loops (no external Codex calls). Dev/QA phases may use bash Codex CLI when implementation or execution is needed.
-
-
-
-1. Use UltraThink: hypotheses → evidence → patterns → synthesis → validation.
-2. Follow KISS, YAGNI, DRY, and SOLID principles across deliverables.
-3. Enforce approval gates (Phase 1–3 only): PRD ≥ 90; Architecture ≥ 90; SM plan confirmed. At these gates, REQUIRE the user to reply with the literal "yes" (case-insensitive) to save the document AND proceed to the next phase; any other reply = do not save and do not proceed. Phase 0 has no gate.
-4. Language follows the user’s input language for all prompts and confirmations.
-5. Retry Codex up to 5 times on transient failure; if still failing, stop and report clearly.
-6. Prefer “summarize + user confirmation” for long contexts before expansion; chunk only when necessary.
-7. Default saving is performed by the Orchestrator. In save phases Dev/QA may also write files. Only one task runs at a time (no concurrent writes).
-8. Use kebab-case `feature_name`. If no clear title, use `feat-YYYYMMDD-`.
-9. Store artifacts under `./.claude/specs/{feature_name}/` with canonical filenames.
-
-
-
-- Inputs may include options: `--skip-tests`, `--direct-dev`, `--skip-scan`.
-- Derive `feature_name` from the feature title; compute `spec_dir=./.claude/specs/{feature_name}/`.
-- Artifacts:
- - `00-repo-scan.md` (unless `--skip-scan`)
- - `01-product-requirements.md` (PRD, after approval)
- - `02-system-architecture.md` (Architecture, after approval)
- - `03-sprint-plan.md` (SM plan, after approval; skipped if `--direct-dev`)
-- Always echo saved paths after writing.
-
-
-
-- Dev phase must execute tasks via bash Codex CLI: `codex e --full-auto --skip-git-repo-check -m gpt-5 ""`.
-- QA phase must execute tasks via bash Codex CLI: `codex e --full-auto --skip-git-repo-check -m gpt-5 ""`.
-- Treat `-m gpt-5` purely as a model parameter; avoid “agent” wording.
-- Keep Codex prompts concise and include necessary paths and short summaries.
-- Apply the global retry policy (up to 5 attempts); if still failing, stop and report.
-
-
-
-- Provide concise progress updates between phases.
-- Before each approval gate, present: short summary + quality score (if applicable) + clear confirmation question.
-- Gates apply to Phases 1–3 (PO/Architect/SM) only. Proceed only on explicit "yes" (case-insensitive). On "yes": save to the canonical path, echo it, and advance to the next phase.
-- Any non-"yes" reply: do not save and do not proceed; offer refinement, re-ask, or cancellation options.
-- Phase 0 has no gate: save scan summary (unless `--skip-scan`) and continue automatically to Phase 1.
-
-
-
-- Identify the lowest-confidence or lowest-scoring areas and focus questions there (2–3 at a time max).
-- Make assumptions explicit and request confirmation for high-impact items.
-- Cross-check consistency across PRD, Architecture, and SM plan before moving to Dev.
-
-
-
-- Repository-aware behavior: If not `--skip-scan`, perform a local repository scan first and cache summary as `00-repo-scan.md` for downstream use.
-- Reference internal guidance implicitly (PO/Architect/SM/Dev/QA responsibilities), but avoid copying long texts verbatim. Embed essential behaviors in prompts below.
-
-
-
-1) Phase 0 — Repository Scan (optional, default on)
- - Run locally if not `--skip-scan`.
- - Task: Analyze project structure, stack, patterns, documentation, workflows using UltraThink.
- - Output: succinct Markdown summary.
- - Save and proceed automatically: write `spec_dir/00-repo-scan.md` and then continue to Phase 1 (no confirmation required).
-
-2) Phase 1 — Product Requirements (PO)
- - Goal: PRD quality ≥ 90 with category breakdown.
- - Local prompt:
- - Role: Sarah (BMAD PO) — meticulous, analytical, user-focused.
- - Include: user request; scan summary/path if available.
- - Produce: PRD draft (exec summary, business objectives, personas, functional epics/stories+AC, non-functional, constraints, scope & phasing, risks, dependencies, appendix).
- - Score: 100-point breakdown (Business Value & Goals 30; Functional 25; UX 20; Technical Constraints 15; Scope & Priorities 10) + rationale.
- - Ask: 2–5 focused clarification questions on lowest-scoring areas.
- - No saving during drafting.
- - Loop: Ask user, refine, rescore until ≥ 90.
- - Gate: Ask confirmation (user language). Only if user replies "yes": save `01-product-requirements.md` and move to Phase 2; otherwise stay here and continue refinement.
-
-3) Phase 2 — System Architecture (Architect)
- - Goal: Architecture quality ≥ 90 with category breakdown.
- - Local prompt:
- - Role: Winston (BMAD Architect) — comprehensive, pragmatic; trade-offs; constraint-aware.
- - Include: PRD content; scan summary/path.
- - Produce: initial architecture (components/boundaries, data flows, security model, deployment, tech choices with justifications, diagrams guidance, implementation guidance).
- - Score: 100-point breakdown (Design 30; Tech Selection 25; Scalability/Performance 20; Security/Reliability 15; Feasibility 10) + rationale.
- - Ask: targeted technical questions for critical decisions.
- - No saving during drafting.
- - Loop: Ask user, refine, rescore until ≥ 90.
- - Gate: Ask confirmation (user language). Only if user replies "yes": save `02-system-architecture.md` and move to Phase 3; otherwise stay here and continue refinement.
-
-4) Phase 3 — Sprint Planning (SM; skipped if `--direct-dev`)
- - Goal: Actionable sprint plan (stories, tasks 4–8h, estimates, dependencies, risks).
- - Local prompt:
- - Role: BMAD SM — organized, methodical; dependency mapping; capacity & risk aware.
- - Include: scan summary/path; PRD path; Architecture path.
- - Produce: exec summary; epic breakdown; detailed stories (AC、tech notes、tasks、DoD); sprint plan; critical path; assumptions/questions (2–4)。
- - No saving during drafting.
- - Gate: Ask confirmation (user language). Only if user replies "yes": save `03-sprint-plan.md` and move to Phase 4; otherwise stay here and continue refinement.
-
-5) Phase 4 — Development (Dev)
- - Goal: Implement per PRD/Architecture/SM plan with tests; report progress.
- - Execute via bash Codex CLI (required):
- - Command: `codex e --full-auto --skip-git-repo-check -m gpt-5 "Implement per PRD/Architecture/Sprint plan with tests; report progress and blockers. Context: [paths + brief summaries]."`
- - Include paths: `00-repo-scan.md` (if exists), `01-product-requirements.md`, `02-system-architecture.md`, `03-sprint-plan.md` (if exists).
- - Follow retry policy (5 attempts); if still failing, stop and report.
- - Orchestrator remains responsible for approvals and saving as needed.
-
-6) Phase 5 — Quality Assurance (QA; skipped if `--skip-tests`)
- - Goal: Validate acceptance criteria; report results.
- - Execute via bash Codex CLI (required):
- - Command: `codex e --full-auto --skip-git-repo-check -m gpt-5 "Create and run tests to validate acceptance criteria; report results with failures and remediation. Context: [paths + brief summaries]."`
- - Include paths: same as Dev.
- - Follow retry policy (5 attempts); if still failing, stop and report.
- - Orchestrator collects results and summarizes quality status.
-
diff --git a/requirements-clarity/.claude-plugin/marketplace.json b/requirements-clarity/.claude-plugin/marketplace.json
deleted file mode 100644
index 7a20eeb..0000000
--- a/requirements-clarity/.claude-plugin/marketplace.json
+++ /dev/null
@@ -1,26 +0,0 @@
-{
- "name": "requirements-clarity",
- "source": "./",
- "description": "Transforms vague requirements into actionable PRDs through systematic clarification with 100-point scoring system",
- "version": "1.0.0",
- "author": {
- "name": "Claude Code Dev Workflows",
- "url": "https://github.com/cexll/myclaude"
- },
- "homepage": "https://github.com/cexll/myclaude",
- "repository": "https://github.com/cexll/myclaude",
- "license": "MIT",
- "keywords": [
- "requirements",
- "clarification",
- "prd",
- "specifications",
- "quality-gates",
- "requirements-engineering"
- ],
- "category": "essentials",
- "strict": false,
- "skills": [
- "./skills/SKILL.md"
- ]
-}
diff --git a/requirements-clarity/skills/SKILL.md b/requirements-clarity/skills/SKILL.md
deleted file mode 100644
index 0fc5394..0000000
--- a/requirements-clarity/skills/SKILL.md
+++ /dev/null
@@ -1,323 +0,0 @@
----
-name: Requirements Clarity
-description: Clarify ambiguous requirements through focused dialogue before implementation. Use when requirements are unclear, features are complex (>2 days), or involve cross-team coordination. Ask two core questions - Why? (YAGNI check) and Simpler? (KISS check) - to ensure clarity before coding.
----
-
-# Requirements Clarity Skill
-
-## Description
-
-Automatically transforms vague requirements into actionable PRDs through systematic clarification with a 100-point scoring system.
-
-## Activation
-
-Auto-activate when detecting vague requirements:
-
-1. **Vague Feature Requests**
- - User says: "add login feature", "implement payment", "create dashboard"
- - Missing: How, with what technology, what constraints?
-
-2. **Missing Technical Context**
- - No technology stack mentioned
- - No integration points identified
- - No performance/security constraints
-
-3. **Incomplete Specifications**
- - No acceptance criteria
- - No success metrics
- - No edge cases considered
- - No error handling mentioned
-
-4. **Ambiguous Scope**
- - Unclear boundaries ("user management" - what exactly?)
- - No distinction between MVP and future enhancements
- - Missing "what's NOT included"
-
-**Do NOT activate when**:
-- Specific file paths mentioned (e.g., "auth.go:45")
-- Code snippets included
-- Existing functions/classes referenced
-- Bug fixes with clear reproduction steps
-
-## Core Principles
-
-1. **Systematic Questioning**
- - Ask focused, specific questions
- - One category at a time (2-3 questions per round)
- - Build on previous answers
- - Avoid overwhelming users
-
-2. **Quality-Driven Iteration**
- - Continuously assess clarity score (0-100)
- - Identify gaps systematically
- - Iterate until ≥ 90 points
- - Document all clarification rounds
-
-3. **Actionable Output**
- - Generate concrete specifications
- - Include measurable acceptance criteria
- - Provide executable phases
- - Enable direct implementation
-
-## Clarification Process
-
-### Step 1: Initial Requirement Analysis
-
-**Input**: User's requirement description
-
-**Tasks**:
-1. Parse and understand core requirement
-2. Generate feature name (kebab-case format)
-3. Determine document version (default `1.0` unless user specifies otherwise)
-4. Ensure `./docs/prds/` exists for PRD output
-5. Perform initial clarity assessment (0-100)
-
-**Assessment Rubric**:
-```
-Functional Clarity: /30 points
-- Clear inputs/outputs: 10 pts
-- User interaction defined: 10 pts
-- Success criteria stated: 10 pts
-
-Technical Specificity: /25 points
-- Technology stack mentioned: 8 pts
-- Integration points identified: 8 pts
-- Constraints specified: 9 pts
-
-Implementation Completeness: /25 points
-- Edge cases considered: 8 pts
-- Error handling mentioned: 9 pts
-- Data validation specified: 8 pts
-
-Business Context: /20 points
-- Problem statement clear: 7 pts
-- Target users identified: 7 pts
-- Success metrics defined: 6 pts
-```
-
-**Initial Response Format**:
-```markdown
-I understand your requirement. Let me help you refine this specification.
-
-**Current Clarity Score**: X/100
-
-**Clear Aspects**:
-- [List what's clear]
-
-**Needs Clarification**:
-- [List gaps]
-
-Let me systematically clarify these points...
-```
-
-### Step 2: Gap Analysis
-
-Identify missing information across four dimensions:
-
-**1. Functional Scope**
-- What is the core functionality?
-- What are the boundaries?
-- What is out of scope?
-- What are edge cases?
-
-**2. User Interaction**
-- How do users interact?
-- What are the inputs?
-- What are the outputs?
-- What are success/failure scenarios?
-
-**3. Technical Constraints**
-- Performance requirements?
-- Compatibility requirements?
-- Security considerations?
-- Scalability needs?
-
-**4. Business Value**
-- What problem does this solve?
-- Who are the target users?
-- What are success metrics?
-- What is the priority?
-
-### Step 3: Interactive Clarification
-
-**Question Strategy**:
-1. Start with highest-impact gaps
-2. Ask 2-3 questions per round
-3. Build context progressively
-4. Use user's language
-5. Provide examples when helpful
-
-**Question Format**:
-```markdown
-I need to clarify the following points to complete the requirements document:
-
-1. **[Category]**: [Specific question]?
- - For example: [Example if helpful]
-
-2. **[Category]**: [Specific question]?
-
-3. **[Category]**: [Specific question]?
-
-Please provide your answers, and I'll continue refining the PRD.
-```
-
-**After Each User Response**:
-1. Update clarity score
-2. Capture new information in the working PRD outline
-3. Identify remaining gaps
-4. If score < 90: Continue with next round of questions
-5. If score ≥ 90: Proceed to PRD generation
-
-**Score Update Format**:
-```markdown
-Thank you for the additional information!
-
-**Clarity Score Update**: X/100 → Y/100
-
-**New Clarified Content**:
-- [Summarize new information]
-
-**Remaining Points to Clarify**:
-- [List remaining gaps if score < 90]
-
-[If score < 90: Continue with next round of questions]
-[If score ≥ 90: "Perfect! I will now generate the complete PRD document..."]
-```
-
-### Step 4: PRD Generation
-
-Once clarity score ≥ 90, generate comprehensive PRD.
-
-**Output File**:
-
-1. **Final PRD**: `./docs/prds/{feature_name}-v{version}-prd.md`
-
-Use the `Write` tool to create or update this file. Derive `{version}` from the document version recorded in the PRD (default `1.0`).
-
-## PRD Document Structure
-
-```markdown
-# {Feature Name} - Product Requirements Document (PRD)
-
-## Requirements Description
-
-### Background
-- **Business Problem**: [Describe the business problem to solve]
-- **Target Users**: [Target user groups]
-- **Value Proposition**: [Value this feature brings]
-
-### Feature Overview
-- **Core Features**: [List of main features]
-- **Feature Boundaries**: [What is and isn't included]
-- **User Scenarios**: [Typical usage scenarios]
-
-### Detailed Requirements
-- **Input/Output**: [Specific input/output specifications]
-- **User Interaction**: [User operation flow]
-- **Data Requirements**: [Data structures and validation rules]
-- **Edge Cases**: [Edge case handling]
-
-## Design Decisions
-
-### Technical Approach
-- **Architecture Choice**: [Technical architecture decisions and rationale]
-- **Key Components**: [List of main technical components]
-- **Data Storage**: [Data models and storage solutions]
-- **Interface Design**: [API/interface specifications]
-
-### Constraints
-- **Performance Requirements**: [Response time, throughput, etc.]
-- **Compatibility**: [System compatibility requirements]
-- **Security**: [Security considerations]
-- **Scalability**: [Future expansion considerations]
-
-### Risk Assessment
-- **Technical Risks**: [Potential technical risks and mitigation plans]
-- **Dependency Risks**: [External dependencies and alternatives]
-- **Schedule Risks**: [Timeline risks and response strategies]
-
-## Acceptance Criteria
-
-### Functional Acceptance
-- [ ] Feature 1: [Specific acceptance conditions]
-- [ ] Feature 2: [Specific acceptance conditions]
-- [ ] Feature 3: [Specific acceptance conditions]
-
-### Quality Standards
-- [ ] Code Quality: [Code standards and review requirements]
-- [ ] Test Coverage: [Testing requirements and coverage]
-- [ ] Performance Metrics: [Performance test pass criteria]
-- [ ] Security Review: [Security review requirements]
-
-### User Acceptance
-- [ ] User Experience: [UX acceptance criteria]
-- [ ] Documentation: [Documentation delivery requirements]
-- [ ] Training Materials: [If needed, training material requirements]
-
-## Execution Phases
-
-### Phase 1: Preparation
-**Goal**: Environment preparation and technical validation
-- [ ] Task 1: [Specific task description]
-- [ ] Task 2: [Specific task description]
-- **Deliverables**: [Phase deliverables]
-- **Time**: [Estimated time]
-
-### Phase 2: Core Development
-**Goal**: Implement core functionality
-- [ ] Task 1: [Specific task description]
-- [ ] Task 2: [Specific task description]
-- **Deliverables**: [Phase deliverables]
-- **Time**: [Estimated time]
-
-### Phase 3: Integration & Testing
-**Goal**: Integration and quality assurance
-- [ ] Task 1: [Specific task description]
-- [ ] Task 2: [Specific task description]
-- **Deliverables**: [Phase deliverables]
-- **Time**: [Estimated time]
-
-### Phase 4: Deployment
-**Goal**: Release and monitoring
-- [ ] Task 1: [Specific task description]
-- [ ] Task 2: [Specific task description]
-- **Deliverables**: [Phase deliverables]
-- **Time**: [Estimated time]
-
----
-
-**Document Version**: 1.0
-**Created**: {timestamp}
-**Clarification Rounds**: {clarification_rounds}
-**Quality Score**: {quality_score}/100
-```
-
-## Behavioral Guidelines
-
-### DO
-- Ask specific, targeted questions
-- Build on previous answers
-- Provide examples to guide users
-- Maintain conversational tone
-- Summarize clarification rounds within the PRD
-- Use clear, professional English
-- Generate concrete specifications
-- Stay in clarification mode until score ≥ 90
-
-### DON'T
-- Ask all questions at once
-- Make assumptions without confirmation
-- Generate PRD before 90+ score
-- Skip any required sections
-- Use vague or abstract language
-- Proceed without user responses
-- Exit skill mode prematurely
-
-## Success Criteria
-
-- Clarity score ≥ 90/100
-- All PRD sections complete with substance
-- Acceptance criteria checklistable (using `- [ ]` format)
-- Execution phases actionable with concrete tasks
-- User approves final PRD
-- Ready for development handoff
diff --git a/skills/codex/scripts/codex.py b/skills/codex/scripts/codex.py
deleted file mode 100755
index aaa0cea..0000000
--- a/skills/codex/scripts/codex.py
+++ /dev/null
@@ -1,332 +0,0 @@
-#!/usr/bin/env python3
-# /// script
-# requires-python = ">=3.8"
-# dependencies = []
-# ///
-"""
-Codex CLI wrapper with cross-platform support and session management.
-**FIXED**: Auto-detect long inputs and use stdin mode to avoid shell argument issues.
-
-Usage:
- New session: uv run codex.py "task" [workdir]
- Stdin mode: uv run codex.py - [workdir]
- Resume: uv run codex.py resume "task" [workdir]
- Resume stdin: uv run codex.py resume - [workdir]
- Alternative: python3 codex.py "task"
- Direct exec: ./codex.py "task"
-
- Model configuration: Set CODEX_MODEL environment variable (default: gpt-5.1-codex)
-"""
-import subprocess
-import json
-import sys
-import os
-from typing import Optional
-
-DEFAULT_MODEL = os.environ.get('CODEX_MODEL', 'gpt-5.1-codex')
-DEFAULT_WORKDIR = '.'
-DEFAULT_TIMEOUT = 7200 # 2 hours in seconds
-FORCE_KILL_DELAY = 5
-
-
-def log_error(message: str):
- """输出错误信息到 stderr"""
- sys.stderr.write(f"ERROR: {message}\n")
-
-
-def log_warn(message: str):
- """输出警告信息到 stderr"""
- sys.stderr.write(f"WARN: {message}\n")
-
-
-def log_info(message: str):
- """输出信息到 stderr"""
- sys.stderr.write(f"INFO: {message}\n")
-
-
-def resolve_timeout() -> int:
- """解析超时配置(秒)"""
- raw = os.environ.get('CODEX_TIMEOUT', '')
- if not raw:
- return DEFAULT_TIMEOUT
-
- try:
- parsed = int(raw)
- if parsed <= 0:
- log_warn(f"Invalid CODEX_TIMEOUT '{raw}', falling back to {DEFAULT_TIMEOUT}s")
- return DEFAULT_TIMEOUT
- # 环境变量是毫秒,转换为秒
- return parsed // 1000 if parsed > 10000 else parsed
- except ValueError:
- log_warn(f"Invalid CODEX_TIMEOUT '{raw}', falling back to {DEFAULT_TIMEOUT}s")
- return DEFAULT_TIMEOUT
-
-
-def normalize_text(text) -> Optional[str]:
- """规范化文本:字符串或字符串数组"""
- if isinstance(text, str):
- return text
- if isinstance(text, list):
- return ''.join(text)
- return None
-
-
-def parse_args():
- """解析命令行参数"""
- if len(sys.argv) < 2:
- log_error('Task required')
- sys.exit(1)
-
- # 检测是否为 resume 模式
- if sys.argv[1] == 'resume':
- if len(sys.argv) < 4:
- log_error('Resume mode requires: resume ')
- sys.exit(1)
- task_arg = sys.argv[3]
- return {
- 'mode': 'resume',
- 'session_id': sys.argv[2],
- 'task': task_arg,
- 'explicit_stdin': task_arg == '-',
- 'workdir': sys.argv[4] if len(sys.argv) > 4 else DEFAULT_WORKDIR,
- }
-
- task_arg = sys.argv[1]
- return {
- 'mode': 'new',
- 'task': task_arg,
- 'explicit_stdin': task_arg == '-',
- 'workdir': sys.argv[2] if len(sys.argv) > 2 else DEFAULT_WORKDIR,
- }
-
-
-def read_piped_task() -> Optional[str]:
- """
- 从 stdin 读取任务文本:
- - 如果 stdin 是管道(非 tty)且存在内容,返回读取到的字符串
- - 否则返回 None
- """
- stdin = sys.stdin
- if stdin is None or stdin.isatty():
- log_info("Stdin is tty or None, skipping pipe read")
- return None
- log_info("Reading from stdin pipe...")
- data = stdin.read()
- if not data:
- log_info("Stdin pipe returned empty data")
- return None
-
- log_info(f"Read {len(data)} bytes from stdin pipe")
- return data
-
-
-def should_stream_via_stdin(task_text: str, piped: bool) -> bool:
- """
- 判定是否通过 stdin 传递任务:
- - 有管道输入
- - 文本包含换行
- - 文本包含反斜杠
- - 文本长度 > 800
- """
- if piped:
- return True
- if '\n' in task_text:
- return True
- if '\\' in task_text:
- return True
- if len(task_text) > 800:
- return True
- return False
-
-
-def build_codex_args(params: dict, target_arg: str) -> list:
- """
- 构建 codex CLI 参数
-
- Args:
- params: 参数字典
- target_arg: 最终传递给 codex 的参数('-' 或具体 task 文本)
- """
- if params['mode'] == 'resume':
- return [
- 'codex', 'e',
- '-m', DEFAULT_MODEL,
- '--skip-git-repo-check',
- '--json',
- 'resume',
- params['session_id'],
- target_arg
- ]
- else:
- base_args = [
- 'codex', 'e',
- '-m', DEFAULT_MODEL,
- '--dangerously-bypass-approvals-and-sandbox',
- '--skip-git-repo-check',
- '-C', params['workdir'],
- '--json',
- target_arg
- ]
-
- return base_args
-
-
-def run_codex_process(codex_args, task_text: str, use_stdin: bool, timeout_sec: int):
- """
- 启动 codex 子进程,处理 stdin / JSON 行输出和错误,成功时返回 (last_agent_message, thread_id)。
- 失败路径上负责日志和退出码。
- """
- thread_id: Optional[str] = None
- last_agent_message: Optional[str] = None
- process: Optional[subprocess.Popen] = None
-
- try:
- # 启动 codex 子进程(文本模式管道)
- log_info(f"Starting codex with args: {' '.join(codex_args[:5])}...")
- process = subprocess.Popen(
- codex_args,
- stdin=subprocess.PIPE if use_stdin else None,
- stdout=subprocess.PIPE,
- stderr=sys.stderr,
- text=True,
- bufsize=1,
- )
- log_info(f"Process started with PID: {process.pid}")
-
- # 如果使用 stdin 模式,写入任务到 stdin 并关闭
- if use_stdin and process.stdin is not None:
- log_info(f"Writing {len(task_text)} chars to stdin...")
- process.stdin.write(task_text)
- process.stdin.flush() # 强制刷新缓冲区,避免大任务死锁
- process.stdin.close()
- log_info("Stdin closed")
-
- # 逐行解析 JSON 输出
- if process.stdout is None:
- log_error('Codex stdout pipe not available')
- sys.exit(1)
-
- log_info("Reading stdout...")
-
- for line in process.stdout:
- line = line.strip()
- if not line:
- continue
-
- try:
- event = json.loads(line)
-
- # 捕获 thread_id
- if event.get('type') == 'thread.started':
- thread_id = event.get('thread_id')
-
- # 捕获 agent_message
- if (event.get('type') == 'item.completed' and
- event.get('item', {}).get('type') == 'agent_message'):
- text = normalize_text(event['item'].get('text'))
- if text:
- last_agent_message = text
-
- except json.JSONDecodeError:
- log_warn(f"Failed to parse line: {line}")
-
- # 等待进程结束并检查退出码
- returncode = process.wait(timeout=timeout_sec)
- if returncode != 0:
- log_error(f'Codex exited with status {returncode}')
- sys.exit(returncode)
-
- if not last_agent_message:
- log_error('Codex completed without agent_message output')
- sys.exit(1)
-
- return last_agent_message, thread_id
-
- except subprocess.TimeoutExpired:
- log_error('Codex execution timeout')
- if process is not None:
- process.kill()
- try:
- process.wait(timeout=FORCE_KILL_DELAY)
- except subprocess.TimeoutExpired:
- pass
- sys.exit(124)
-
- except FileNotFoundError:
- log_error("codex command not found in PATH")
- sys.exit(127)
-
- except KeyboardInterrupt:
- log_error("Codex interrupted by user")
- if process is not None:
- process.terminate()
- try:
- process.wait(timeout=FORCE_KILL_DELAY)
- except subprocess.TimeoutExpired:
- process.kill()
- sys.exit(130)
-
-
-def main():
- log_info("Script started")
- params = parse_args()
- log_info(f"Parsed args: mode={params['mode']}, task_len={len(params['task'])}")
- timeout_sec = resolve_timeout()
- log_info(f"Timeout: {timeout_sec}s")
-
- explicit_stdin = params.get('explicit_stdin', False)
-
- if explicit_stdin:
- log_info("Explicit stdin mode: reading task from stdin")
- task_text = sys.stdin.read()
- if not task_text:
- log_error("Explicit stdin mode requires task input from stdin")
- sys.exit(1)
- piped = not sys.stdin.isatty()
- else:
- piped_task = read_piped_task()
- piped = piped_task is not None
- task_text = piped_task if piped else params['task']
-
- use_stdin = explicit_stdin or should_stream_via_stdin(task_text, piped)
-
- if use_stdin:
- reasons = []
- if piped:
- reasons.append('piped input')
- if explicit_stdin:
- reasons.append('explicit "-"')
- if '\n' in task_text:
- reasons.append('newline')
- if '\\' in task_text:
- reasons.append('backslash')
- if len(task_text) > 800:
- reasons.append('length>800')
-
- if reasons:
- log_warn(f"Using stdin mode for task due to: {', '.join(reasons)}")
-
- target_arg = '-' if use_stdin else params['task']
- codex_args = build_codex_args(params, target_arg)
-
- log_info('codex running...')
-
- last_agent_message, thread_id = run_codex_process(
- codex_args=codex_args,
- task_text=task_text,
- use_stdin=use_stdin,
- timeout_sec=timeout_sec,
- )
-
- # 输出 agent_message
- sys.stdout.write(f"{last_agent_message}\n")
-
- # 输出 session_id(如果存在)
- if thread_id:
- sys.stdout.write(f"\n---\nSESSION_ID: {thread_id}\n")
-
- sys.exit(0)
-
-
-if __name__ == '__main__':
- main()