modify
This commit is contained in:
		
							
								
								
									
										14
									
								
								code/spark/spark-core/file/emp.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								code/spark/spark-core/file/emp.json
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,14 @@ | ||||
| {"EMPNO": 7369,"ENAME": "SMITH","JOB": "CLERK","MGR": 7902,"HIREDATE": "1980-12-17 00:00:00","SAL": 800.00,"COMM": null,"DEPTNO": 20} | ||||
| {"EMPNO": 7499,"ENAME": "ALLEN","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-02-20 00:00:00","SAL": 1600.00,"COMM": 300.00,"DEPTNO": 30} | ||||
| {"EMPNO": 7521,"ENAME": "WARD","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-02-22 00:00:00","SAL": 1250.00,"COMM": 500.00,"DEPTNO": 30} | ||||
| {"EMPNO": 7566,"ENAME": "JONES","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-04-02 00:00:00","SAL": 2975.00,"COMM": null,"DEPTNO": 20} | ||||
| {"EMPNO": 7654,"ENAME": "MARTIN","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-09-28 00:00:00","SAL": 1250.00,"COMM": 1400.00,"DEPTNO": 30} | ||||
| {"EMPNO": 7698,"ENAME": "BLAKE","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-05-01 00:00:00","SAL": 2850.00,"COMM": null,"DEPTNO": 30} | ||||
| {"EMPNO": 7782,"ENAME": "CLARK","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-06-09 00:00:00","SAL": 2450.00,"COMM": null,"DEPTNO": 10} | ||||
| {"EMPNO": 7788,"ENAME": "SCOTT","JOB": "ANALYST","MGR": 7566,"HIREDATE": "1987-04-19 00:00:00","SAL": 1500.00,"COMM": null,"DEPTNO": 20} | ||||
| {"EMPNO": 7839,"ENAME": "KING","JOB": "PRESIDENT","MGR": null,"HIREDATE": "1981-11-17 00:00:00","SAL": 5000.00,"COMM": null,"DEPTNO": 10} | ||||
| {"EMPNO": 7844,"ENAME": "TURNER","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-09-08 00:00:00","SAL": 1500.00,"COMM": 0.00,"DEPTNO": 30} | ||||
| {"EMPNO": 7876,"ENAME": "ADAMS","JOB": "CLERK","MGR": 7788,"HIREDATE": "1987-05-23 00:00:00","SAL": 1100.00,"COMM": null,"DEPTNO": 20} | ||||
| {"EMPNO": 7900,"ENAME": "JAMES","JOB": "CLERK","MGR": 7698,"HIREDATE": "1981-12-03 00:00:00","SAL": 950.00,"COMM": null,"DEPTNO": 30} | ||||
| {"EMPNO": 7902,"ENAME": "FORD","JOB": "ANALYST","MGR": 7566,"HIREDATE": "1981-12-03 00:00:00","SAL": 3000.00,"COMM": null,"DEPTNO": 20} | ||||
| {"EMPNO": 7934,"ENAME": "MILLER","JOB": "CLERK","MGR": 7782,"HIREDATE": "1982-01-23 00:00:00","SAL": 1300.00,"COMM": null,"DEPTNO": 10} | ||||
| @@ -0,0 +1,65 @@ | ||||
| package rdd.scala | ||||
|  | ||||
| import org.apache.spark.sql.expressions.Aggregator | ||||
| import org.apache.spark.sql.{Encoder, Encoders, SparkSession, functions} | ||||
|  | ||||
| // 1.定义员工类,对于可能存在null值的字段需要使用Option进行包装 | ||||
| case class Emp(ename: String, comm: scala.Option[Double], deptno: Long, empno: Long, | ||||
|                hiredate: String, job: String, mgr: scala.Option[Long], sal: Double) | ||||
|  | ||||
| // 2.定义聚合操作的中间输出类型 | ||||
| case class SumAndCount(var sum: Double, var count: Long) | ||||
|  | ||||
| /* 3.自定义聚合函数 | ||||
|  * @IN  聚合操作的输入类型 | ||||
|  * @BUF reduction操作输出值的类型 | ||||
|  * @OUT 聚合操作的输出类型 | ||||
|  */ | ||||
| object MyAverage extends Aggregator[Emp, SumAndCount, Double] { | ||||
|  | ||||
|  | ||||
|   // 4.用于聚合操作的的初始零值 | ||||
|   override def zero: SumAndCount = SumAndCount(0, 0) | ||||
|  | ||||
|  | ||||
|   // 5.同一分区中的reduce操作 | ||||
|   override def reduce(avg: SumAndCount, emp: Emp): SumAndCount = { | ||||
|     avg.sum += emp.sal | ||||
|     avg.count += 1 | ||||
|     avg | ||||
|   } | ||||
|  | ||||
|   // 6.不同分区中的merge操作 | ||||
|   override def merge(avg1: SumAndCount, avg2: SumAndCount): SumAndCount = { | ||||
|     avg1.sum += avg2.sum | ||||
|     avg1.count += avg2.count | ||||
|     avg1 | ||||
|   } | ||||
|  | ||||
|   // 7.定义最终的输出类型 | ||||
|   override def finish(reduction: SumAndCount): Double = reduction.sum / reduction.count | ||||
|  | ||||
|   // 8.中间类型的编码转换 | ||||
|   override def bufferEncoder: Encoder[SumAndCount] = Encoders.product | ||||
|  | ||||
|   // 9.输出类型的编码转换 | ||||
|   override def outputEncoder: Encoder[Double] = Encoders.scalaDouble | ||||
| } | ||||
|  | ||||
| object SparkSqlApp { | ||||
|  | ||||
|   // 测试方法 | ||||
|   def main(args: Array[String]): Unit = { | ||||
|  | ||||
|     val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() | ||||
|     import spark.implicits._ | ||||
|     val ds = spark.read.json("file/emp.json").as[Emp] | ||||
|  | ||||
|     // 10.使用内置avg()函数和自定义函数分别进行计算,验证自定义函数是否正确 | ||||
|     val myAvg = ds.select(MyAverage.toColumn.name("average_sal")).first() | ||||
|     val avg = ds.select(functions.avg(ds.col("sal"))).first().get(0) | ||||
|  | ||||
|     println("自定义average函数 : " + myAvg) | ||||
|     println("内置的average函数 : " + avg) | ||||
|   } | ||||
| } | ||||
| @@ -1,57 +0,0 @@ | ||||
| package rdd.scala | ||||
|  | ||||
| import org.apache.spark.sql.{Dataset, SparkSession} | ||||
|  | ||||
|  | ||||
| object SparkSqlTest extends App { | ||||
|  | ||||
|  | ||||
|  | ||||
|   val spark = SparkSession.builder().appName("Spark SQL basic example").config("spark.some.config.option", "some-value").getOrCreate() | ||||
|  | ||||
|   val dataFrames = spark.read.json("/usr/file/people.json") | ||||
|  | ||||
|   df.select("name").show() | ||||
|  | ||||
|   df.printSchema() | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|   import spark.implicits._ | ||||
|  | ||||
|   val primitiveDS = Seq(1, 2, 3).toDS() | ||||
|   primitiveDS.printSchema() | ||||
|   primitiveDS.map(_ + 1).collect() | ||||
|  | ||||
|   peopleDS.select("name").show()  //失败 | ||||
|   peopleDS.dtypes | ||||
|   peopleDS.printSchema() | ||||
|   peopleDS.toDF() | ||||
|   // Encoders are created for case classes | ||||
|  | ||||
|   /* 1.此时把selected写成为selected ,编译器没有任何提示 */ | ||||
|   spark.sql("selected name from emp") | ||||
|  | ||||
|   /* 2.此时把selected写成为selected ,编译器有提示; 但是把字段名称name写成了nameEd ,编译器没有任何提示*/ | ||||
|   val dataFrames = spark.read.json("people.json") | ||||
|   dataFrames.selected("nameEd").show() | ||||
|   dataFrames.map(line=>line.name) | ||||
|  | ||||
|   case class Person(name: String, age: Long) | ||||
|  | ||||
|   /* 3.此时最为严格,语法和字段名称错误都被检测出来*/ | ||||
|   val dataSet: Dataset[Person] = spark.read.json("people.json").as[Person] | ||||
|   dataSet.selected("name") | ||||
|   dataSet.map(line=>line.name) | ||||
|   dataSet.map(line=>line.nameEd) | ||||
|  | ||||
|   /* 4.即使在由RDD转换为dataFrame时候指定了类型Person,依然无法提示字段名称*/ | ||||
|   val peopleDF = spark.sparkContext | ||||
|     .textFile("people.json") | ||||
|     .map(_.split(",")) | ||||
|     .map(attributes => Person(attributes(0), attributes(1).trim.toInt)) | ||||
|     .toDF() | ||||
|   peopleDF.map(line=>line.name) | ||||
|  | ||||
| } | ||||
| @@ -67,7 +67,7 @@ class TransformationTest { | ||||
|   @Test | ||||
|   def sample(): Unit = { | ||||
|     val list = List(1, 2, 3, 4, 5, 6) | ||||
|     sc.parallelize(list).sample(withReplacement = false, 0.5).foreach(println) | ||||
|     sc.parallelize(list).sample(withReplacement = false, fraction = 0.5).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user