modify
This commit is contained in:
		
							
								
								
									
										14
									
								
								code/spark/spark-core/file/emp.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								code/spark/spark-core/file/emp.json
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,14 @@ | |||||||
|  | {"EMPNO": 7369,"ENAME": "SMITH","JOB": "CLERK","MGR": 7902,"HIREDATE": "1980-12-17 00:00:00","SAL": 800.00,"COMM": null,"DEPTNO": 20} | ||||||
|  | {"EMPNO": 7499,"ENAME": "ALLEN","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-02-20 00:00:00","SAL": 1600.00,"COMM": 300.00,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7521,"ENAME": "WARD","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-02-22 00:00:00","SAL": 1250.00,"COMM": 500.00,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7566,"ENAME": "JONES","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-04-02 00:00:00","SAL": 2975.00,"COMM": null,"DEPTNO": 20} | ||||||
|  | {"EMPNO": 7654,"ENAME": "MARTIN","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-09-28 00:00:00","SAL": 1250.00,"COMM": 1400.00,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7698,"ENAME": "BLAKE","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-05-01 00:00:00","SAL": 2850.00,"COMM": null,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7782,"ENAME": "CLARK","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-06-09 00:00:00","SAL": 2450.00,"COMM": null,"DEPTNO": 10} | ||||||
|  | {"EMPNO": 7788,"ENAME": "SCOTT","JOB": "ANALYST","MGR": 7566,"HIREDATE": "1987-04-19 00:00:00","SAL": 1500.00,"COMM": null,"DEPTNO": 20} | ||||||
|  | {"EMPNO": 7839,"ENAME": "KING","JOB": "PRESIDENT","MGR": null,"HIREDATE": "1981-11-17 00:00:00","SAL": 5000.00,"COMM": null,"DEPTNO": 10} | ||||||
|  | {"EMPNO": 7844,"ENAME": "TURNER","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-09-08 00:00:00","SAL": 1500.00,"COMM": 0.00,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7876,"ENAME": "ADAMS","JOB": "CLERK","MGR": 7788,"HIREDATE": "1987-05-23 00:00:00","SAL": 1100.00,"COMM": null,"DEPTNO": 20} | ||||||
|  | {"EMPNO": 7900,"ENAME": "JAMES","JOB": "CLERK","MGR": 7698,"HIREDATE": "1981-12-03 00:00:00","SAL": 950.00,"COMM": null,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7902,"ENAME": "FORD","JOB": "ANALYST","MGR": 7566,"HIREDATE": "1981-12-03 00:00:00","SAL": 3000.00,"COMM": null,"DEPTNO": 20} | ||||||
|  | {"EMPNO": 7934,"ENAME": "MILLER","JOB": "CLERK","MGR": 7782,"HIREDATE": "1982-01-23 00:00:00","SAL": 1300.00,"COMM": null,"DEPTNO": 10} | ||||||
| @@ -0,0 +1,65 @@ | |||||||
|  | package rdd.scala | ||||||
|  |  | ||||||
|  | import org.apache.spark.sql.expressions.Aggregator | ||||||
|  | import org.apache.spark.sql.{Encoder, Encoders, SparkSession, functions} | ||||||
|  |  | ||||||
|  | // 1.定义员工类,对于可能存在null值的字段需要使用Option进行包装 | ||||||
|  | case class Emp(ename: String, comm: scala.Option[Double], deptno: Long, empno: Long, | ||||||
|  |                hiredate: String, job: String, mgr: scala.Option[Long], sal: Double) | ||||||
|  |  | ||||||
|  | // 2.定义聚合操作的中间输出类型 | ||||||
|  | case class SumAndCount(var sum: Double, var count: Long) | ||||||
|  |  | ||||||
|  | /* 3.自定义聚合函数 | ||||||
|  |  * @IN  聚合操作的输入类型 | ||||||
|  |  * @BUF reduction操作输出值的类型 | ||||||
|  |  * @OUT 聚合操作的输出类型 | ||||||
|  |  */ | ||||||
|  | object MyAverage extends Aggregator[Emp, SumAndCount, Double] { | ||||||
|  |  | ||||||
|  |  | ||||||
|  |   // 4.用于聚合操作的的初始零值 | ||||||
|  |   override def zero: SumAndCount = SumAndCount(0, 0) | ||||||
|  |  | ||||||
|  |  | ||||||
|  |   // 5.同一分区中的reduce操作 | ||||||
|  |   override def reduce(avg: SumAndCount, emp: Emp): SumAndCount = { | ||||||
|  |     avg.sum += emp.sal | ||||||
|  |     avg.count += 1 | ||||||
|  |     avg | ||||||
|  |   } | ||||||
|  |  | ||||||
|  |   // 6.不同分区中的merge操作 | ||||||
|  |   override def merge(avg1: SumAndCount, avg2: SumAndCount): SumAndCount = { | ||||||
|  |     avg1.sum += avg2.sum | ||||||
|  |     avg1.count += avg2.count | ||||||
|  |     avg1 | ||||||
|  |   } | ||||||
|  |  | ||||||
|  |   // 7.定义最终的输出类型 | ||||||
|  |   override def finish(reduction: SumAndCount): Double = reduction.sum / reduction.count | ||||||
|  |  | ||||||
|  |   // 8.中间类型的编码转换 | ||||||
|  |   override def bufferEncoder: Encoder[SumAndCount] = Encoders.product | ||||||
|  |  | ||||||
|  |   // 9.输出类型的编码转换 | ||||||
|  |   override def outputEncoder: Encoder[Double] = Encoders.scalaDouble | ||||||
|  | } | ||||||
|  |  | ||||||
|  | object SparkSqlApp { | ||||||
|  |  | ||||||
|  |   // 测试方法 | ||||||
|  |   def main(args: Array[String]): Unit = { | ||||||
|  |  | ||||||
|  |     val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() | ||||||
|  |     import spark.implicits._ | ||||||
|  |     val ds = spark.read.json("file/emp.json").as[Emp] | ||||||
|  |  | ||||||
|  |     // 10.使用内置avg()函数和自定义函数分别进行计算,验证自定义函数是否正确 | ||||||
|  |     val myAvg = ds.select(MyAverage.toColumn.name("average_sal")).first() | ||||||
|  |     val avg = ds.select(functions.avg(ds.col("sal"))).first().get(0) | ||||||
|  |  | ||||||
|  |     println("自定义average函数 : " + myAvg) | ||||||
|  |     println("内置的average函数 : " + avg) | ||||||
|  |   } | ||||||
|  | } | ||||||
| @@ -1,57 +0,0 @@ | |||||||
| package rdd.scala |  | ||||||
|  |  | ||||||
| import org.apache.spark.sql.{Dataset, SparkSession} |  | ||||||
|  |  | ||||||
|  |  | ||||||
| object SparkSqlTest extends App { |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|   val spark = SparkSession.builder().appName("Spark SQL basic example").config("spark.some.config.option", "some-value").getOrCreate() |  | ||||||
|  |  | ||||||
|   val dataFrames = spark.read.json("/usr/file/people.json") |  | ||||||
|  |  | ||||||
|   df.select("name").show() |  | ||||||
|  |  | ||||||
|   df.printSchema() |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|   import spark.implicits._ |  | ||||||
|  |  | ||||||
|   val primitiveDS = Seq(1, 2, 3).toDS() |  | ||||||
|   primitiveDS.printSchema() |  | ||||||
|   primitiveDS.map(_ + 1).collect() |  | ||||||
|  |  | ||||||
|   peopleDS.select("name").show()  //失败 |  | ||||||
|   peopleDS.dtypes |  | ||||||
|   peopleDS.printSchema() |  | ||||||
|   peopleDS.toDF() |  | ||||||
|   // Encoders are created for case classes |  | ||||||
|  |  | ||||||
|   /* 1.此时把selected写成为selected ,编译器没有任何提示 */ |  | ||||||
|   spark.sql("selected name from emp") |  | ||||||
|  |  | ||||||
|   /* 2.此时把selected写成为selected ,编译器有提示; 但是把字段名称name写成了nameEd ,编译器没有任何提示*/ |  | ||||||
|   val dataFrames = spark.read.json("people.json") |  | ||||||
|   dataFrames.selected("nameEd").show() |  | ||||||
|   dataFrames.map(line=>line.name) |  | ||||||
|  |  | ||||||
|   case class Person(name: String, age: Long) |  | ||||||
|  |  | ||||||
|   /* 3.此时最为严格,语法和字段名称错误都被检测出来*/ |  | ||||||
|   val dataSet: Dataset[Person] = spark.read.json("people.json").as[Person] |  | ||||||
|   dataSet.selected("name") |  | ||||||
|   dataSet.map(line=>line.name) |  | ||||||
|   dataSet.map(line=>line.nameEd) |  | ||||||
|  |  | ||||||
|   /* 4.即使在由RDD转换为dataFrame时候指定了类型Person,依然无法提示字段名称*/ |  | ||||||
|   val peopleDF = spark.sparkContext |  | ||||||
|     .textFile("people.json") |  | ||||||
|     .map(_.split(",")) |  | ||||||
|     .map(attributes => Person(attributes(0), attributes(1).trim.toInt)) |  | ||||||
|     .toDF() |  | ||||||
|   peopleDF.map(line=>line.name) |  | ||||||
|  |  | ||||||
| } |  | ||||||
| @@ -67,7 +67,7 @@ class TransformationTest { | |||||||
|   @Test |   @Test | ||||||
|   def sample(): Unit = { |   def sample(): Unit = { | ||||||
|     val list = List(1, 2, 3, 4, 5, 6) |     val list = List(1, 2, 3, 4, 5, 6) | ||||||
|     sc.parallelize(list).sample(withReplacement = false, 0.5).foreach(println) |     sc.parallelize(list).sample(withReplacement = false, fraction = 0.5).foreach(println) | ||||||
|   } |   } | ||||||
|  |  | ||||||
|  |  | ||||||
|   | |||||||
| @@ -144,7 +144,7 @@ sc.parallelize(list, 3).mapPartitionsWithIndex((index, iterator) => { | |||||||
|  |  | ||||||
| ```scala | ```scala | ||||||
| val list = List(1, 2, 3, 4, 5, 6) | val list = List(1, 2, 3, 4, 5, 6) | ||||||
| sc.parallelize(list).sample(withReplacement = false, 0.5).foreach(println) | sc.parallelize(list).sample(withReplacement = false, fraction = 0.5).foreach(println) | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| ### 1.7 union | ### 1.7 union | ||||||
|   | |||||||
							
								
								
									
										345
									
								
								notes/SparkSQL-API基本使用.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										345
									
								
								notes/SparkSQL-API基本使用.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,345 @@ | |||||||
|  | # SparkSQL API基本使用 | ||||||
|  |  | ||||||
|  | ## 一、创建DataFrames | ||||||
|  |  | ||||||
|  | Spark中所有功能的入口点是`SparkSession`,可以使用`SparkSession.builder()`创建。创建后应用程序就可以从现有RDD,Hive表或Spark数据源创建DataFrame。如下所示: | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() | ||||||
|  | val df = spark.read.json("/usr/file/emp.json") | ||||||
|  | df.show() | ||||||
|  |  | ||||||
|  | // 建议在进行spark SQL编程前导入下面的隐式转换,因为DataFrames和dataSets中很多操作都依赖了隐式转换 | ||||||
|  | import spark.implicits._ | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | 这里可以启动`spark-shell`进行测试,需要注意的是`spark-shell`启动后会自动创建一个名为`spark`的`SparkSession`,在命令行中可以直接引用即可: | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | ## 二、DataFrames基本操作 | ||||||
|  |  | ||||||
|  | ### 2.1 printSchema | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | // 以树形结构打印dataframe的schema信息  | ||||||
|  | df.printSchema() | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | ### 2.2 使用DataFrame API进行基本查询 | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | // 查询员工姓名及工作 | ||||||
|  | df.select($"ename", $"job").show() | ||||||
|  |  | ||||||
|  | // 查询工资大于2000的员工信息 | ||||||
|  | df.filter($"sal" > 2000).show() | ||||||
|  |  | ||||||
|  | // 分组统计部门人数 | ||||||
|  | df.groupBy("deptno").count().show() | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | ### 2.3 使用SQL进行基本查询 | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | // 首先需要将DataFrame注册为临时视图 | ||||||
|  | df.createOrReplaceTempView("emp") | ||||||
|  |  | ||||||
|  | // 查询员工姓名及工作 | ||||||
|  | spark.sql("SELECT ename,job FROM emp").show() | ||||||
|  |  | ||||||
|  | // 查询工资大于2000的员工信息 | ||||||
|  | spark.sql("SELECT * FROM emp where sal > 2000").show() | ||||||
|  |  | ||||||
|  | // 分组统计部门人数 | ||||||
|  | spark.sql("SELECT deptno,count(ename) FROM emp group by deptno").show() | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | ### 2.4 全局临时视图 | ||||||
|  |  | ||||||
|  | 上面使用`createOrReplaceTempView`创建的是会话临时视图,它的生命周期仅限于会话范围,会随会话的结束而结束。 | ||||||
|  |  | ||||||
|  | 你也可以使用`createGlobalTempView`创建全局临时视图,全局临时视图可以在所有会话之间共享,并直到整个Spark应用程序终止才会消失。全局临时视图被定义在内置的`global_temp`数据库下,需要使用限定名称进行引用,如`SELECT * FROM global_temp.view1`。 | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | // 注册为全局临时视图 | ||||||
|  | df.createGlobalTempView("gemp") | ||||||
|  |  | ||||||
|  | // 查询员工姓名及工作,使用限定名称进行引用 | ||||||
|  | spark.sql("SELECT ename,job FROM global_temp.gemp").show() | ||||||
|  |  | ||||||
|  | // 查询工资大于2000的员工信息,使用限定名称进行引用 | ||||||
|  | spark.sql("SELECT * FROM global_temp.gemp where sal > 2000").show() | ||||||
|  |  | ||||||
|  | // 分组统计部门人数,使用限定名称进行引用 | ||||||
|  | spark.sql("SELECT deptno,count(ename) FROM global_temp.gemp  group by deptno").show() | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | ## 三、创建Datasets | ||||||
|  |  | ||||||
|  | ### 3.1 由外部数据集创建 | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | // 1.需要导入隐式转换 | ||||||
|  | import spark.implicits._ | ||||||
|  |  | ||||||
|  | // 2.创建case class,等价于Java Bean | ||||||
|  | case class Emp(ename: String, comm: Double, deptno: Long, empno: Long,  | ||||||
|  |                hiredate: String, job: String, mgr: Long, sal: Double) | ||||||
|  |  | ||||||
|  | // 3.由外部数据集创建Datasets | ||||||
|  | val ds = spark.read.json("/usr/file/emp.json").as[Emp] | ||||||
|  | ds.show() | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | ### 3.2 由内部数据集创建 | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | // 1.需要导入隐式转换 | ||||||
|  | import spark.implicits._ | ||||||
|  |  | ||||||
|  | // 2.创建case class,等价于Java Bean | ||||||
|  | case class Emp(ename: String, comm: Double, deptno: Long, empno: Long,  | ||||||
|  |                hiredate: String, job: String, mgr: Long, sal: Double) | ||||||
|  |  | ||||||
|  | // 3.由内部数据集创建Datasets | ||||||
|  | val caseClassDS = Seq(Emp("ALLEN", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0), | ||||||
|  |                       Emp("JONES", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0)) | ||||||
|  |                     .toDS() | ||||||
|  | caseClassDS.show() | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | ## 四、DataFrames与Datasets互相转换 | ||||||
|  |  | ||||||
|  | Spark提供了非常简单的转换方法用于DataFrames与Datasets互相转换,示例如下: | ||||||
|  |  | ||||||
|  | ```shell | ||||||
|  | # DataFrames转Datasets | ||||||
|  | scala> df.as[Emp] | ||||||
|  | res1: org.apache.spark.sql.Dataset[Emp] = [COMM: double, DEPTNO: bigint ... 6 more fields] | ||||||
|  |  | ||||||
|  | # Datasets转DataFrames | ||||||
|  | scala> ds.toDF() | ||||||
|  | res2: org.apache.spark.sql.DataFrame = [COMM: double, DEPTNO: bigint ... 6 more fields] | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | ## 五、RDDs转换为DataFrames\Datasets | ||||||
|  |  | ||||||
|  | Spark支持两种方式把RDD转换为DataFrames,分别是使用反射推断和指定schema转换。 | ||||||
|  |  | ||||||
|  | ### 5.1 使用反射推断 | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | // 1.导入隐式转换 | ||||||
|  | import spark.implicits._ | ||||||
|  |  | ||||||
|  | // 2.创建部门类 | ||||||
|  | case class Dept(deptno: Long, dname: String, loc: String) | ||||||
|  |  | ||||||
|  | // 3.创建RDD并转换为dataSet | ||||||
|  | val rddToDS = spark.sparkContext | ||||||
|  |   .textFile("/usr/file/dept.txt") | ||||||
|  |   .map(_.split("\t")) | ||||||
|  |   .map(line => Dept(line(0).trim.toLong, line(1), line(2))) | ||||||
|  |   .toDS()  // 如果调用toDF()则转换为dataFrame  | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | ### 5.2 以编程方式指定Schema | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | import org.apache.spark.sql.Row | ||||||
|  | import org.apache.spark.sql.types._ | ||||||
|  |  | ||||||
|  |  | ||||||
|  | // 1.定义每个列的列类型 | ||||||
|  | val fields = Array(StructField("deptno", LongType, nullable = true), | ||||||
|  |                    StructField("dname", StringType, nullable = true), | ||||||
|  |                    StructField("loc", StringType, nullable = true)) | ||||||
|  |  | ||||||
|  | // 2.创建schema | ||||||
|  | val schema = StructType(fields) | ||||||
|  |  | ||||||
|  | // 3.创建RDD | ||||||
|  | val deptRDD = spark.sparkContext.textFile("/usr/file/dept.txt") | ||||||
|  | val rowRDD = deptRDD.map(_.split("\t")).map(line => Row(line(0).toLong, line(1), line(2))) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | // 4.将RDD转换为dataFrame | ||||||
|  | val deptDF = spark.createDataFrame(rowRDD, schema) | ||||||
|  | deptDF.show() | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | ## 六、使用自定义聚合函数 | ||||||
|  |  | ||||||
|  | Scala提供了两种自定义聚合函数的方法,分别如下: | ||||||
|  |  | ||||||
|  | + 有类型的自定义聚合函数,主要适用于DataSets; | ||||||
|  | + 无类型的自定义聚合函数,主要适用于DataFrames。 | ||||||
|  |  | ||||||
|  | 以下分别使用两种方式来自定义一个求平均值的聚合函数,这里以计算员工平均工资为例。两种自定义方式分别如下: | ||||||
|  |  | ||||||
|  | ### 6.1 有类型的自定义函数 | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | import org.apache.spark.sql.expressions.Aggregator | ||||||
|  | import org.apache.spark.sql.{Encoder, Encoders, SparkSession, functions} | ||||||
|  |  | ||||||
|  | // 1.定义员工类,对于可能存在null值的字段需要使用Option进行包装 | ||||||
|  | case class Emp(ename: String, comm: scala.Option[Double], deptno: Long, empno: Long, | ||||||
|  |                hiredate: String, job: String, mgr: scala.Option[Long], sal: Double) | ||||||
|  |  | ||||||
|  | // 2.定义聚合操作的中间输出类型 | ||||||
|  | case class SumAndCount(var sum: Double, var count: Long) | ||||||
|  |  | ||||||
|  | /* 3.自定义聚合函数 | ||||||
|  |  * @IN  聚合操作的输入类型 | ||||||
|  |  * @BUF reduction操作输出值的类型 | ||||||
|  |  * @OUT 聚合操作的输出类型 | ||||||
|  |  */ | ||||||
|  | object MyAverage extends Aggregator[Emp, SumAndCount, Double] { | ||||||
|  |      | ||||||
|  |     // 4.用于聚合操作的的初始零值 | ||||||
|  |     override def zero: SumAndCount = SumAndCount(0, 0) | ||||||
|  |      | ||||||
|  |     // 5.同一分区中的reduce操作 | ||||||
|  |     override def reduce(avg: SumAndCount, emp: Emp): SumAndCount = { | ||||||
|  |         avg.sum += emp.sal | ||||||
|  |         avg.count += 1 | ||||||
|  |         avg | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     // 6.不同分区中的merge操作 | ||||||
|  |     override def merge(avg1: SumAndCount, avg2: SumAndCount): SumAndCount = { | ||||||
|  |         avg1.sum += avg2.sum | ||||||
|  |         avg1.count += avg2.count | ||||||
|  |         avg1 | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     // 7.定义最终的输出类型 | ||||||
|  |     override def finish(reduction: SumAndCount): Double = reduction.sum / reduction.count | ||||||
|  |  | ||||||
|  |     // 8.中间类型的编码转换 | ||||||
|  |     override def bufferEncoder: Encoder[SumAndCount] = Encoders.product | ||||||
|  |  | ||||||
|  |     // 9.输出类型的编码转换 | ||||||
|  |     override def outputEncoder: Encoder[Double] = Encoders.scalaDouble | ||||||
|  | } | ||||||
|  |  | ||||||
|  | object SparkSqlApp { | ||||||
|  |  | ||||||
|  |     // 测试方法 | ||||||
|  |     def main(args: Array[String]): Unit = { | ||||||
|  |  | ||||||
|  |         val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() | ||||||
|  |         import spark.implicits._ | ||||||
|  |         val ds = spark.read.json("file/emp.json").as[Emp] | ||||||
|  |  | ||||||
|  |         // 10.使用内置avg()函数和自定义函数分别进行计算,验证自定义函数是否正确 | ||||||
|  |         val myAvg = ds.select(MyAverage.toColumn.name("average_sal")).first() | ||||||
|  |         val avg = ds.select(functions.avg(ds.col("sal"))).first().get(0) | ||||||
|  |  | ||||||
|  |         println("自定义average函数 : " + myAvg) | ||||||
|  |         println("内置的average函数 : " + avg) | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | 自定义聚合函数需要实现的方法比较多,这里以绘图的方式来演示其执行流程,以及每个方法的作用: | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 关于`zero`,`reduce`,`merge`,`finish`方法的作用在上图都有说明,这里解释一下中间类型和输出类型的编码转换,这个写法比较固定,基本上就是两种情况: | ||||||
|  |  | ||||||
|  | + 自定义类型case class或者元组就使用`Encoders.product`方法; | ||||||
|  | + 基本类型就使用其对应名称的方法,如`scalaByte `,`scalaFloat`,`scalaShort`等。 | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | override def bufferEncoder: Encoder[SumAndCount] = Encoders.product | ||||||
|  | override def outputEncoder: Encoder[Double] = Encoders.scalaDouble | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | ### 6.2 无类型的自定义聚合函数 | ||||||
|  |  | ||||||
|  | 理解了有类型的自定义聚合函数后,无类型的定义方式也基本相同,代码如下: | ||||||
|  |  | ||||||
|  | ```scala | ||||||
|  | import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction} | ||||||
|  | import org.apache.spark.sql.types._ | ||||||
|  | import org.apache.spark.sql.{Row, SparkSession} | ||||||
|  |  | ||||||
|  | object MyAverage extends UserDefinedAggregateFunction { | ||||||
|  |   // 1.聚合操作输入参数的类型,字段名称可以自定义 | ||||||
|  |   def inputSchema: StructType = StructType(StructField("MyInputColumn", LongType) :: Nil) | ||||||
|  |  | ||||||
|  |   // 2.聚合操作中间值的类型,字段名称可以自定义 | ||||||
|  |   def bufferSchema: StructType = { | ||||||
|  |     StructType(StructField("sum", LongType) :: StructField("MyCount", LongType) :: Nil) | ||||||
|  |   } | ||||||
|  |  | ||||||
|  |   // 3.聚合操作输出参数的类型 | ||||||
|  |   def dataType: DataType = DoubleType | ||||||
|  |  | ||||||
|  |   // 4.此函数是否始终在相同输入上返回相同的输出,通常为true | ||||||
|  |   def deterministic: Boolean = true | ||||||
|  |  | ||||||
|  |   // 5.定义零值 | ||||||
|  |   def initialize(buffer: MutableAggregationBuffer): Unit = { | ||||||
|  |     buffer(0) = 0L | ||||||
|  |     buffer(1) = 0L | ||||||
|  |   } | ||||||
|  |  | ||||||
|  |   // 6.同一分区中的reduce操作 | ||||||
|  |   def update(buffer: MutableAggregationBuffer, input: Row): Unit = { | ||||||
|  |     if (!input.isNullAt(0)) { | ||||||
|  |       buffer(0) = buffer.getLong(0) + input.getLong(0) | ||||||
|  |       buffer(1) = buffer.getLong(1) + 1 | ||||||
|  |     } | ||||||
|  |   } | ||||||
|  |  | ||||||
|  |   // 7.不同分区中的merge操作 | ||||||
|  |   def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = { | ||||||
|  |     buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0) | ||||||
|  |     buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1) | ||||||
|  |   } | ||||||
|  |  | ||||||
|  |   // 8.计算最终的输出值 | ||||||
|  |   def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1) | ||||||
|  | } | ||||||
|  |  | ||||||
|  | object SparkSqlApp { | ||||||
|  |  | ||||||
|  |   // 测试方法 | ||||||
|  |   def main(args: Array[String]): Unit = { | ||||||
|  |  | ||||||
|  |     val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() | ||||||
|  |     // 9.注册自定义的聚合函数 | ||||||
|  |     spark.udf.register("myAverage", MyAverage) | ||||||
|  |  | ||||||
|  |     val df = spark.read.json("file/emp.json") | ||||||
|  |     df.createOrReplaceTempView("emp") | ||||||
|  |  | ||||||
|  |     // 10.使用自定义函数和内置函数分别进行计算 | ||||||
|  |     val myAvg = spark.sql("SELECT myAverage(sal) as avg_sal FROM emp").first() | ||||||
|  |     val avg = spark.sql("SELECT avg(sal) as avg_sal FROM emp").first() | ||||||
|  |  | ||||||
|  |     println("自定义average函数 : " + myAvg) | ||||||
|  |     println("内置的average函数 : " + avg) | ||||||
|  |   } | ||||||
|  | } | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | ## 参考资料 | ||||||
|  |  | ||||||
|  | [Spark SQL, DataFrames and Datasets Guide > Getting Started](https://spark.apache.org/docs/latest/sql-getting-started.html) | ||||||
							
								
								
									
										
											BIN
										
									
								
								pictures/spark-scheme.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								pictures/spark-scheme.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 13 KiB | 
							
								
								
									
										
											BIN
										
									
								
								pictures/spark-sql-shell.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								pictures/spark-sql-shell.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 49 KiB | 
							
								
								
									
										
											BIN
										
									
								
								pictures/spark-sql-自定义函数.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								pictures/spark-sql-自定义函数.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 70 KiB | 
							
								
								
									
										4
									
								
								resources/dept.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								resources/dept.json
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,4 @@ | |||||||
|  | {"DEPTNO": 10,"DNAME": "ACCOUNTING","LOC": "NEW YORK"} | ||||||
|  | {"DEPTNO": 20,"DNAME": "RESEARCH","LOC": "DALLAS"} | ||||||
|  | {"DEPTNO": 30,"DNAME": "SALES","LOC": "CHICAGO"} | ||||||
|  | {"DEPTNO": 40,"DNAME": "OPERATIONS","LOC": "BOSTON"} | ||||||
							
								
								
									
										14
									
								
								resources/emp.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								resources/emp.json
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,14 @@ | |||||||
|  | {"EMPNO": 7369,"ENAME": "SMITH","JOB": "CLERK","MGR": 7902,"HIREDATE": "1980-12-17 00:00:00","SAL": 800.00,"COMM": null,"DEPTNO": 20} | ||||||
|  | {"EMPNO": 7499,"ENAME": "ALLEN","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-02-20 00:00:00","SAL": 1600.00,"COMM": 300.00,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7521,"ENAME": "WARD","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-02-22 00:00:00","SAL": 1250.00,"COMM": 500.00,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7566,"ENAME": "JONES","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-04-02 00:00:00","SAL": 2975.00,"COMM": null,"DEPTNO": 20} | ||||||
|  | {"EMPNO": 7654,"ENAME": "MARTIN","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-09-28 00:00:00","SAL": 1250.00,"COMM": 1400.00,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7698,"ENAME": "BLAKE","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-05-01 00:00:00","SAL": 2850.00,"COMM": null,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7782,"ENAME": "CLARK","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-06-09 00:00:00","SAL": 2450.00,"COMM": null,"DEPTNO": 10} | ||||||
|  | {"EMPNO": 7788,"ENAME": "SCOTT","JOB": "ANALYST","MGR": 7566,"HIREDATE": "1987-04-19 00:00:00","SAL": 1500.00,"COMM": null,"DEPTNO": 20} | ||||||
|  | {"EMPNO": 7839,"ENAME": "KING","JOB": "PRESIDENT","MGR": null,"HIREDATE": "1981-11-17 00:00:00","SAL": 5000.00,"COMM": null,"DEPTNO": 10} | ||||||
|  | {"EMPNO": 7844,"ENAME": "TURNER","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-09-08 00:00:00","SAL": 1500.00,"COMM": 0.00,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7876,"ENAME": "ADAMS","JOB": "CLERK","MGR": 7788,"HIREDATE": "1987-05-23 00:00:00","SAL": 1100.00,"COMM": null,"DEPTNO": 20} | ||||||
|  | {"EMPNO": 7900,"ENAME": "JAMES","JOB": "CLERK","MGR": 7698,"HIREDATE": "1981-12-03 00:00:00","SAL": 950.00,"COMM": null,"DEPTNO": 30} | ||||||
|  | {"EMPNO": 7902,"ENAME": "FORD","JOB": "ANALYST","MGR": 7566,"HIREDATE": "1981-12-03 00:00:00","SAL": 3000.00,"COMM": null,"DEPTNO": 20} | ||||||
|  | {"EMPNO": 7934,"ENAME": "MILLER","JOB": "CLERK","MGR": 7782,"HIREDATE": "1982-01-23 00:00:00","SAL": 1300.00,"COMM": null,"DEPTNO": 10} | ||||||
		Reference in New Issue
	
	Block a user