streaming 整合 flume
This commit is contained in:
parent
485ddabe55
commit
7d9b9fa9d8
@ -98,6 +98,7 @@
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
<!--打包.scala文件需要配置此插件-->
|
||||
<plugin>
|
||||
<groupId>org.scala-tools</groupId>
|
||||
<artifactId>maven-scala-plugin</artifactId>
|
||||
|
360
notes/Spark_Streaming整合Flume.md
Normal file
360
notes/Spark_Streaming整合Flume.md
Normal file
@ -0,0 +1,360 @@
|
||||
# Spark Straming 整合 Flume
|
||||
|
||||
<nav>
|
||||
<a href="#一简介">一、简介</a><br/>
|
||||
<a href="#二推送式方法">二、推送式方法</a><br/>
|
||||
<a href="#21-配置日志收集Flume">2.1 配置日志收集Flume</a><br/>
|
||||
<a href="#22-项目依赖">2.2 项目依赖</a><br/>
|
||||
<a href="#23-Spark-Streaming接收日志数据">2.3 Spark Streaming接收日志数据</a><br/>
|
||||
<a href="#24-项目打包">2.4 项目打包</a><br/>
|
||||
<a href="#25-启动服务和提交作业">2.5 启动服务和提交作业</a><br/>
|
||||
<a href="#26-测试">2.6 测试</a><br/>
|
||||
<a href="#27-注意事项">2.7 注意事项</a><br/>
|
||||
<a href="#三拉取式方法">三、拉取式方法</a><br/>
|
||||
<a href="#31--配置日志收集Flume">3.1 配置日志收集Flume</a><br/>
|
||||
<a href="#22-新增依赖">2.2 新增依赖</a><br/>
|
||||
<a href="#23-Spark-Streaming接收日志数据">2.3 Spark Streaming接收日志数据</a><br/>
|
||||
<a href="#24-启动测试">2.4 启动测试</a><br/>
|
||||
</nav>
|
||||
|
||||
|
||||
## 一、简介
|
||||
|
||||
Apache Flume是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中。Spark Straming提供了以下两种方式用于Flume的整合。
|
||||
|
||||
## 二、推送式方法
|
||||
|
||||
在推送式方法(Flume-style Push-based Approach)中,Spark Streaming程序需要对某台服务器的某个端口进行监听,Flume通过`avro Sink`将数据源源不断推送到该端口。
|
||||
|
||||
这里以日志文件内容为例,将不断新增的日志文件内容推送到Streaming程序中,具体整合方式如下:
|
||||
|
||||
### 2.1 配置日志收集Flume
|
||||
|
||||
新建配置`netcat-memory-avro.properties`,使用`tail`命令监听文件内容变化,然后将新的文件内容通过`avro sink`发送到hadoop001这台服务器的8888端口:
|
||||
|
||||
```properties
|
||||
#指定agent的sources,sinks,channels
|
||||
a1.sources = s1
|
||||
a1.sinks = k1
|
||||
a1.channels = c1
|
||||
|
||||
#配置sources属性
|
||||
a1.sources.s1.type = exec
|
||||
a1.sources.s1.command = tail -F /tmp/log.txt
|
||||
a1.sources.s1.shell = /bin/bash -c
|
||||
a1.sources.s1.channels = c1
|
||||
|
||||
#配置sink
|
||||
a1.sinks.k1.type = avro
|
||||
a1.sinks.k1.hostname = hadoop001
|
||||
a1.sinks.k1.port = 8888
|
||||
a1.sinks.k1.batch-size = 1
|
||||
a1.sinks.k1.channel = c1
|
||||
|
||||
#配置channel类型
|
||||
a1.channels.c1.type = memory
|
||||
a1.channels.c1.capacity = 1000
|
||||
a1.channels.c1.transactionCapacity = 100
|
||||
```
|
||||
|
||||
### 2.2 项目依赖
|
||||
|
||||
项目采用Maven工程进行构建,主要依赖为`spark-streaming`和`spark-streaming-flume`。
|
||||
|
||||
```xml
|
||||
<properties>
|
||||
<scala.version>2.11</scala.version>
|
||||
<spark.version>2.4.0</spark.version>
|
||||
</properties>
|
||||
|
||||
<dependencies>
|
||||
<!-- Spark Streaming-->
|
||||
<dependency>
|
||||
<groupId>org.apache.spark</groupId>
|
||||
<artifactId>spark-streaming_${scala.version}</artifactId>
|
||||
<version>${spark.version}</version>
|
||||
</dependency>
|
||||
<!-- Spark Streaming整合Flume依赖-->
|
||||
<dependency>
|
||||
<groupId>org.apache.spark</groupId>
|
||||
<artifactId>spark-streaming-flume_${scala.version}</artifactId>
|
||||
<version>2.4.3</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
```
|
||||
|
||||
### 2.3 Spark Streaming接收日志数据
|
||||
|
||||
调用 FlumeUtils工具类的`createStream`方法,对hadoop001的8888端口进行监听,获取到流数据并进行打印:
|
||||
|
||||
```scala
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.streaming.{Seconds, StreamingContext}
|
||||
import org.apache.spark.streaming.flume.FlumeUtils
|
||||
|
||||
object PushBasedWordCount {
|
||||
|
||||
def main(args: Array[String]): Unit = {
|
||||
val sparkConf = new SparkConf()
|
||||
val ssc = new StreamingContext(sparkConf, Seconds(5))
|
||||
// 1.获取输入流
|
||||
val flumeStream = FlumeUtils.createStream(ssc, "hadoop001", 8888)
|
||||
// 2.打印输入流的数据
|
||||
flumeStream.map(line => new String(line.event.getBody.array()).trim).print()
|
||||
|
||||
ssc.start()
|
||||
ssc.awaitTermination()
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 2.4 项目打包
|
||||
|
||||
因为Spark安装目录下是不含有`spark-streaming-flume`依赖包的,所以在提交到集群运行时候必须提供该依赖包,你可以在提交命令中使用`--jar`指定上传到服务器的该依赖包,或者使用`--packages org.apache.spark:spark-streaming-flume_2.12:2.4.3`指定依赖包的完整名称,这样程序在启动时会先去中央仓库进行下载,这要求你的生产环境必须网络畅通。
|
||||
|
||||
这里我采用的是第三种方式:使用`maven-shade-plugin`插件进行`ALL IN ONE`打包,把所有依赖的Jar一并打入最终包中。需要注意的是`spark-streaming`包在Spark安装目录的`jars`目录中已经提供,所以不需要打入。插件配置如下:
|
||||
|
||||
> 关于大数据应用常用打包方式单独整理至:[大数据应用常用打包方式](https://github.com/heibaiying/BigData-Notes/blob/master/notes/大数据应用常用打包方式.md)
|
||||
>
|
||||
> 本项目完整源码见:[spark-streaming-flume](https://github.com/heibaiying/BigData-Notes/tree/master/code/spark/spark-streaming-flume)
|
||||
|
||||
```xml
|
||||
<build>
|
||||
<plugins>
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-compiler-plugin</artifactId>
|
||||
<configuration>
|
||||
<source>8</source>
|
||||
<target>8</target>
|
||||
</configuration>
|
||||
</plugin>
|
||||
<!--使用shade进行打包-->
|
||||
<plugin>
|
||||
<groupId>org.apache.maven.plugins</groupId>
|
||||
<artifactId>maven-shade-plugin</artifactId>
|
||||
<configuration>
|
||||
<createDependencyReducedPom>true</createDependencyReducedPom>
|
||||
<filters>
|
||||
<filter>
|
||||
<artifact>*:*</artifact>
|
||||
<excludes>
|
||||
<exclude>META-INF/*.SF</exclude>
|
||||
<exclude>META-INF/*.sf</exclude>
|
||||
<exclude>META-INF/*.DSA</exclude>
|
||||
<exclude>META-INF/*.dsa</exclude>
|
||||
<exclude>META-INF/*.RSA</exclude>
|
||||
<exclude>META-INF/*.rsa</exclude>
|
||||
<exclude>META-INF/*.EC</exclude>
|
||||
<exclude>META-INF/*.ec</exclude>
|
||||
<exclude>META-INF/MSFTSIG.SF</exclude>
|
||||
<exclude>META-INF/MSFTSIG.RSA</exclude>
|
||||
</excludes>
|
||||
</filter>
|
||||
</filters>
|
||||
<artifactSet>
|
||||
<excludes>
|
||||
<exclude>org.apache.spark:spark-streaming_${scala.version}</exclude>
|
||||
<exclude>org.scala-lang:scala-library</exclude>
|
||||
<exclude>org.apache.commons:commons-lang3</exclude>
|
||||
</excludes>
|
||||
</artifactSet>
|
||||
</configuration>
|
||||
<executions>
|
||||
<execution>
|
||||
<phase>package</phase>
|
||||
<goals>
|
||||
<goal>shade</goal>
|
||||
</goals>
|
||||
<configuration>
|
||||
<transformers>
|
||||
<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
|
||||
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
|
||||
</transformer>
|
||||
</transformers>
|
||||
</configuration>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
<!--打包.scala文件需要配置此插件-->
|
||||
<plugin>
|
||||
<groupId>org.scala-tools</groupId>
|
||||
<artifactId>maven-scala-plugin</artifactId>
|
||||
<version>2.15.1</version>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>scala-compile</id>
|
||||
<goals>
|
||||
<goal>compile</goal>
|
||||
</goals>
|
||||
<configuration>
|
||||
<includes>
|
||||
<include>**/*.scala</include>
|
||||
</includes>
|
||||
</configuration>
|
||||
</execution>
|
||||
<execution>
|
||||
<id>scala-test-compile</id>
|
||||
<goals>
|
||||
<goal>testCompile</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
</plugins>
|
||||
</build>
|
||||
```
|
||||
|
||||
使用`mvn clean package`命令打包后会生产以下两个Jar包,提交`非original`开头的Jar即可。
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/spark-streaming-flume-jar.png"/> </div>
|
||||
|
||||
### 2.5 启动服务和提交作业
|
||||
|
||||
启动Flume服务:
|
||||
|
||||
```shell
|
||||
flume-ng agent \
|
||||
--conf conf \
|
||||
--conf-file /usr/app/apache-flume-1.6.0-cdh5.15.2-bin/examples/netcat-memory-avro.properties \
|
||||
--name a1 -Dflume.root.logger=INFO,console
|
||||
```
|
||||
|
||||
提交Spark Streaming作业:
|
||||
|
||||
```shell
|
||||
spark-submit \
|
||||
--class com.heibaiying.flume.PushBasedWordCount \
|
||||
--master local[4] \
|
||||
/usr/appjar/spark-streaming-flume-1.0.jar
|
||||
```
|
||||
|
||||
### 2.6 测试
|
||||
|
||||
这里使用`echo`命令模拟日志产生的场景,往日志文件中追加数据,然后查看程序的输出:
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/spark-flume-input.png"/> </div>
|
||||
|
||||
Spark Streaming程序成功接收到数据并打印输出:
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/spark-flume-console.png"/> </div>
|
||||
|
||||
### 2.7 注意事项
|
||||
|
||||
#### 1. 启动顺序
|
||||
|
||||
这里需要注意的,不论你先启动Spark程序还是Flume程序,由于两者的启动都需要一定的时间,此时先启动的程序会短暂地抛出端口拒绝连接的异常,此时不需要进行任何操作,等待两个程序都启动完成即可。
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/flume-retry.png"/> </div>
|
||||
|
||||
#### 2. 版本一致
|
||||
|
||||
最好保证用于本地开发和编译的Scala版本和Spark的Scala版本一致,至少保证大版本一致,如都是`2.11`。
|
||||
|
||||
<br/>
|
||||
|
||||
## 三、拉取式方法
|
||||
|
||||
拉取式方法(Pull-based Approach using a Custom Sink)是将数据推送到SparkSink接收器中,此时数据会保持缓冲状态,Spark Streaming定时从接收器中拉取数据。这种方式是基于事务的,即只有在Spark Streaming接收和复制数据完成后,才会删除缓冲的数据。与第一种方式相比,具有更强的可靠性和容错保证。整合步骤如下:
|
||||
|
||||
### 3.1 配置日志收集Flume
|
||||
|
||||
新建Flume配置文件`netcat-memory-sparkSink.properties`,配置和上面基本一致,只是把`a1.sinks.k1.type`的属性修改为`org.apache.spark.streaming.flume.sink.SparkSink`,即采用Spark接收器。
|
||||
|
||||
```properties
|
||||
#指定agent的sources,sinks,channels
|
||||
a1.sources = s1
|
||||
a1.sinks = k1
|
||||
a1.channels = c1
|
||||
|
||||
#配置sources属性
|
||||
a1.sources.s1.type = exec
|
||||
a1.sources.s1.command = tail -F /tmp/log.txt
|
||||
a1.sources.s1.shell = /bin/bash -c
|
||||
a1.sources.s1.channels = c1
|
||||
|
||||
#配置sink
|
||||
a1.sinks.k1.type = org.apache.spark.streaming.flume.sink.SparkSink
|
||||
a1.sinks.k1.hostname = hadoop001
|
||||
a1.sinks.k1.port = 8888
|
||||
a1.sinks.k1.batch-size = 1
|
||||
a1.sinks.k1.channel = c1
|
||||
|
||||
#配置channel类型
|
||||
a1.channels.c1.type = memory
|
||||
a1.channels.c1.capacity = 1000
|
||||
a1.channels.c1.transactionCapacity = 100
|
||||
```
|
||||
|
||||
### 2.2 新增依赖
|
||||
|
||||
使用拉取式方法需要额外添加以下两个依赖:
|
||||
|
||||
```xml
|
||||
<dependency>
|
||||
<groupId>org.scala-lang</groupId>
|
||||
<artifactId>scala-library</artifactId>
|
||||
<version>2.12.8</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.commons</groupId>
|
||||
<artifactId>commons-lang3</artifactId>
|
||||
<version>3.5</version>
|
||||
</dependency>
|
||||
```
|
||||
|
||||
注意:添加这两个依赖只是为了本地开发测试,Spark的安装目录下已经提供了这两个依赖,所以在最终打包时需要进行排除。
|
||||
|
||||
### 2.3 Spark Streaming接收日志数据
|
||||
|
||||
这里和上面推送式方法的代码基本相同,只是将调用方法改为`createPollingStream`。
|
||||
|
||||
```scala
|
||||
import org.apache.spark.SparkConf
|
||||
import org.apache.spark.streaming.{Seconds, StreamingContext}
|
||||
import org.apache.spark.streaming.flume.FlumeUtils
|
||||
|
||||
object PullBasedWordCount {
|
||||
|
||||
def main(args: Array[String]): Unit = {
|
||||
|
||||
val sparkConf = new SparkConf()
|
||||
val ssc = new StreamingContext(sparkConf, Seconds(5))
|
||||
// 1.获取输入流
|
||||
val flumeStream = FlumeUtils.createPollingStream(ssc, "hadoop001", 8888)
|
||||
// 2.打印输入流中的数据
|
||||
flumeStream.map(line => new String(line.event.getBody.array()).trim).print()
|
||||
ssc.start()
|
||||
ssc.awaitTermination()
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 2.4 启动测试
|
||||
|
||||
启动和提交作业流程与上面相同,这里给出执行脚本,过程不再赘述。
|
||||
|
||||
启动Flume进行日志收集:
|
||||
|
||||
```shell
|
||||
flume-ng agent \
|
||||
--conf conf \
|
||||
--conf-file /usr/app/apache-flume-1.6.0-cdh5.15.2-bin/examples/netcat-memory-sparkSink.properties \
|
||||
--name a1 -Dflume.root.logger=INFO,console
|
||||
```
|
||||
|
||||
提交Spark Streaming作业:
|
||||
|
||||
```shel
|
||||
spark-submit \
|
||||
--class com.heibaiying.flume.PullBasedWordCount \
|
||||
--master local[4] \
|
||||
/usr/appjar/spark-streaming-flume-1.0.jar
|
||||
```
|
||||
|
||||
|
||||
|
||||
## 参考资料
|
||||
|
||||
1. [streaming-flume-integration](https://spark.apache.org/docs/latest/streaming-flume-integration.html)
|
@ -5,12 +5,15 @@
|
||||
<a href="#二mvn-package">二、mvn package</a><br/>
|
||||
<a href="#三maven-assembly-plugin插件">三、maven-assembly-plugin插件</a><br/>
|
||||
<a href="#四maven-shade-plugin插件">四、maven-shade-plugin插件</a><br/>
|
||||
<a href="#五使用非Maven仓库中的Jar">五、使用非Maven仓库中的Jar</a><br/>
|
||||
<a href="#六排除集群中已经存在的Jar">六、排除集群中已经存在的Jar</a><br/>
|
||||
<a href="#七使用建议">七、使用建议</a><br/>
|
||||
<a href="#五其他打包需求">五、其他打包需求</a><br/>
|
||||
<a href="#1-使用非Maven仓库中的Jar">1. 使用非Maven仓库中的Jar</a><br/>
|
||||
<a href="#2-排除集群中已经存在的Jar">2. 排除集群中已经存在的Jar</a><br/>
|
||||
<a href="#3-打包scala文件">3. 打包.scala文件</a><br/>
|
||||
</nav>
|
||||
|
||||
|
||||
|
||||
|
||||
## 一、简介
|
||||
|
||||
在提交大数据作业到集群中运行时,通常都需要先将项目打成Jar包。Java项目通常都采用Maven进行构建,Maven提供的常用打包方式及插件有以下四种:
|
||||
@ -118,6 +121,8 @@ assembly.xml文件内容如下:
|
||||
|
||||
`maven-shade-plugin`比`maven-assembly-plugin`功能更为强大,比如你的工程依赖很多的JAR包,而被依赖的JAR又会依赖其他的JAR包,这样,当工程中依赖到不同的版本的 JAR时,并且JAR中具有相同名称的资源文件时,shade插件会尝试将所有资源文件打包在一起时,而不是和assembly一样执行覆盖操作。
|
||||
|
||||
**通常使用`maven-shade-plugin`就能够完成大多数的打包需求,其配置简单且适用性最广,因此建议优先使用此方式。**
|
||||
|
||||
### 4.1 基本配置
|
||||
|
||||
采用`maven-shade-plugin`进行打包时候,配置示例如下:
|
||||
@ -192,7 +197,9 @@ assembly.xml文件内容如下:
|
||||
|
||||
|
||||
|
||||
## 五、使用非Maven仓库中的Jar
|
||||
## 五、其他打包需求
|
||||
|
||||
### 1. 使用非Maven仓库中的Jar
|
||||
|
||||
通常上面两种打包能够满足大多数的使用场景。但是如果你想把某些没有被Maven管理Jar包打入到最终的Jar中,比如你在`resources/lib`下引入的其他非Maven仓库中的Jar,此时可以使用`maven-jar-plugin`和`maven-dependency-plugin`插件将其打入最终的Jar中。
|
||||
|
||||
@ -238,9 +245,9 @@ assembly.xml文件内容如下:
|
||||
</build>
|
||||
```
|
||||
|
||||
## 六、排除集群中已经存在的Jar
|
||||
### 2. 排除集群中已经存在的Jar
|
||||
|
||||
为了避免冲突通常官方文档通常都会建议你排除集群中已经提供的Jar包,如下:
|
||||
通常为了避免冲突,官方文档都会建议你排除集群中已经提供的Jar包,如下:
|
||||
|
||||
Spark 官方文档 Submitting Applications 章节:
|
||||
|
||||
@ -250,14 +257,41 @@ Strom官方文档 Running Topologies on a Production Cluster 章节:
|
||||
|
||||
>Then run mvn assembly:assembly to get an appropriately packaged jar. Make sure you exclude the Storm jars since the cluster already has Storm on the classpath.
|
||||
|
||||
|
||||
排除Jar包的方式主要有以下两种:
|
||||
|
||||
+ 对需要排除的Jar包依赖添加`<scope>provided</scope>`标签,此时该Jar包会被排除,但是不建议使用这种方式,因为此时你在本地运行也无法使用该Jar包;
|
||||
+ 建议直接在`maven-assembly-plugin`或`maven-shade-plugin`的配置文件中使用`<exclude>`进行排除。
|
||||
|
||||
## 七、使用建议
|
||||
### 3. 打包.scala文件
|
||||
|
||||
通常使用`maven-shade-plugin`就能够完成大多数的打包需求,其配置简单且适用性最广,因此建议使用此方式。
|
||||
如果你使用到scala语言进行编程,此时需要特别注意 :默认情况下Maven是不会把`.scala`文件打入最终的Jar中,需要额外添加`maven-scala-plugin`插件,常用配置如下:
|
||||
|
||||
```xml
|
||||
<plugin>
|
||||
<groupId>org.scala-tools</groupId>
|
||||
<artifactId>maven-scala-plugin</artifactId>
|
||||
<version>2.15.1</version>
|
||||
<executions>
|
||||
<execution>
|
||||
<id>scala-compile</id>
|
||||
<goals>
|
||||
<goal>compile</goal>
|
||||
</goals>
|
||||
<configuration>
|
||||
<includes>
|
||||
<include>**/*.scala</include>
|
||||
</includes>
|
||||
</configuration>
|
||||
</execution>
|
||||
<execution>
|
||||
<id>scala-test-compile</id>
|
||||
<goals>
|
||||
<goal>testCompile</goal>
|
||||
</goals>
|
||||
</execution>
|
||||
</executions>
|
||||
</plugin>
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
BIN
pictures/spark-streaming-flume-jar.png
Normal file
BIN
pictures/spark-streaming-flume-jar.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 21 KiB |
Loading…
x
Reference in New Issue
Block a user