345 lines
11 KiB
Markdown
345 lines
11 KiB
Markdown
# SparkSQL API基本使用
|
||
|
||
## 一、创建DataFrames
|
||
|
||
Spark中所有功能的入口点是`SparkSession`,可以使用`SparkSession.builder()`创建。创建后应用程序就可以从现有RDD,Hive表或Spark数据源创建DataFrame。如下所示:
|
||
|
||
```scala
|
||
val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate()
|
||
val df = spark.read.json("/usr/file/emp.json")
|
||
df.show()
|
||
|
||
// 建议在进行spark SQL编程前导入下面的隐式转换,因为DataFrames和dataSets中很多操作都依赖了隐式转换
|
||
import spark.implicits._
|
||
```
|
||
|
||
这里可以启动`spark-shell`进行测试,需要注意的是`spark-shell`启动后会自动创建一个名为`spark`的`SparkSession`,在命令行中可以直接引用即可:
|
||
|
||

|
||
|
||
## 二、DataFrames基本操作
|
||
|
||
### 2.1 printSchema
|
||
|
||
```scala
|
||
// 以树形结构打印dataframe的schema信息
|
||
df.printSchema()
|
||
```
|
||
|
||

|
||
|
||
### 2.2 使用DataFrame API进行基本查询
|
||
|
||
```scala
|
||
// 查询员工姓名及工作
|
||
df.select($"ename", $"job").show()
|
||
|
||
// 查询工资大于2000的员工信息
|
||
df.filter($"sal" > 2000).show()
|
||
|
||
// 分组统计部门人数
|
||
df.groupBy("deptno").count().show()
|
||
```
|
||
|
||
### 2.3 使用SQL进行基本查询
|
||
|
||
```scala
|
||
// 首先需要将DataFrame注册为临时视图
|
||
df.createOrReplaceTempView("emp")
|
||
|
||
// 查询员工姓名及工作
|
||
spark.sql("SELECT ename,job FROM emp").show()
|
||
|
||
// 查询工资大于2000的员工信息
|
||
spark.sql("SELECT * FROM emp where sal > 2000").show()
|
||
|
||
// 分组统计部门人数
|
||
spark.sql("SELECT deptno,count(ename) FROM emp group by deptno").show()
|
||
```
|
||
|
||
### 2.4 全局临时视图
|
||
|
||
上面使用`createOrReplaceTempView`创建的是会话临时视图,它的生命周期仅限于会话范围,会随会话的结束而结束。
|
||
|
||
你也可以使用`createGlobalTempView`创建全局临时视图,全局临时视图可以在所有会话之间共享,并直到整个Spark应用程序终止才会消失。全局临时视图被定义在内置的`global_temp`数据库下,需要使用限定名称进行引用,如`SELECT * FROM global_temp.view1`。
|
||
|
||
```scala
|
||
// 注册为全局临时视图
|
||
df.createGlobalTempView("gemp")
|
||
|
||
// 查询员工姓名及工作,使用限定名称进行引用
|
||
spark.sql("SELECT ename,job FROM global_temp.gemp").show()
|
||
|
||
// 查询工资大于2000的员工信息,使用限定名称进行引用
|
||
spark.sql("SELECT * FROM global_temp.gemp where sal > 2000").show()
|
||
|
||
// 分组统计部门人数,使用限定名称进行引用
|
||
spark.sql("SELECT deptno,count(ename) FROM global_temp.gemp group by deptno").show()
|
||
```
|
||
|
||
## 三、创建Datasets
|
||
|
||
### 3.1 由外部数据集创建
|
||
|
||
```scala
|
||
// 1.需要导入隐式转换
|
||
import spark.implicits._
|
||
|
||
// 2.创建case class,等价于Java Bean
|
||
case class Emp(ename: String, comm: Double, deptno: Long, empno: Long,
|
||
hiredate: String, job: String, mgr: Long, sal: Double)
|
||
|
||
// 3.由外部数据集创建Datasets
|
||
val ds = spark.read.json("/usr/file/emp.json").as[Emp]
|
||
ds.show()
|
||
```
|
||
|
||
### 3.2 由内部数据集创建
|
||
|
||
```scala
|
||
// 1.需要导入隐式转换
|
||
import spark.implicits._
|
||
|
||
// 2.创建case class,等价于Java Bean
|
||
case class Emp(ename: String, comm: Double, deptno: Long, empno: Long,
|
||
hiredate: String, job: String, mgr: Long, sal: Double)
|
||
|
||
// 3.由内部数据集创建Datasets
|
||
val caseClassDS = Seq(Emp("ALLEN", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0),
|
||
Emp("JONES", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0))
|
||
.toDS()
|
||
caseClassDS.show()
|
||
```
|
||
|
||
|
||
|
||
## 四、DataFrames与Datasets互相转换
|
||
|
||
Spark提供了非常简单的转换方法用于DataFrames与Datasets互相转换,示例如下:
|
||
|
||
```shell
|
||
# DataFrames转Datasets
|
||
scala> df.as[Emp]
|
||
res1: org.apache.spark.sql.Dataset[Emp] = [COMM: double, DEPTNO: bigint ... 6 more fields]
|
||
|
||
# Datasets转DataFrames
|
||
scala> ds.toDF()
|
||
res2: org.apache.spark.sql.DataFrame = [COMM: double, DEPTNO: bigint ... 6 more fields]
|
||
```
|
||
|
||
|
||
|
||
## 五、RDDs转换为DataFrames\Datasets
|
||
|
||
Spark支持两种方式把RDD转换为DataFrames,分别是使用反射推断和指定schema转换。
|
||
|
||
### 5.1 使用反射推断
|
||
|
||
```scala
|
||
// 1.导入隐式转换
|
||
import spark.implicits._
|
||
|
||
// 2.创建部门类
|
||
case class Dept(deptno: Long, dname: String, loc: String)
|
||
|
||
// 3.创建RDD并转换为dataSet
|
||
val rddToDS = spark.sparkContext
|
||
.textFile("/usr/file/dept.txt")
|
||
.map(_.split("\t"))
|
||
.map(line => Dept(line(0).trim.toLong, line(1), line(2)))
|
||
.toDS() // 如果调用toDF()则转换为dataFrame
|
||
```
|
||
|
||
### 5.2 以编程方式指定Schema
|
||
|
||
```scala
|
||
import org.apache.spark.sql.Row
|
||
import org.apache.spark.sql.types._
|
||
|
||
|
||
// 1.定义每个列的列类型
|
||
val fields = Array(StructField("deptno", LongType, nullable = true),
|
||
StructField("dname", StringType, nullable = true),
|
||
StructField("loc", StringType, nullable = true))
|
||
|
||
// 2.创建schema
|
||
val schema = StructType(fields)
|
||
|
||
// 3.创建RDD
|
||
val deptRDD = spark.sparkContext.textFile("/usr/file/dept.txt")
|
||
val rowRDD = deptRDD.map(_.split("\t")).map(line => Row(line(0).toLong, line(1), line(2)))
|
||
|
||
|
||
// 4.将RDD转换为dataFrame
|
||
val deptDF = spark.createDataFrame(rowRDD, schema)
|
||
deptDF.show()
|
||
```
|
||
|
||
## 六、使用自定义聚合函数
|
||
|
||
Scala提供了两种自定义聚合函数的方法,分别如下:
|
||
|
||
+ 有类型的自定义聚合函数,主要适用于DataSets;
|
||
+ 无类型的自定义聚合函数,主要适用于DataFrames。
|
||
|
||
以下分别使用两种方式来自定义一个求平均值的聚合函数,这里以计算员工平均工资为例。两种自定义方式分别如下:
|
||
|
||
### 6.1 有类型的自定义函数
|
||
|
||
```scala
|
||
import org.apache.spark.sql.expressions.Aggregator
|
||
import org.apache.spark.sql.{Encoder, Encoders, SparkSession, functions}
|
||
|
||
// 1.定义员工类,对于可能存在null值的字段需要使用Option进行包装
|
||
case class Emp(ename: String, comm: scala.Option[Double], deptno: Long, empno: Long,
|
||
hiredate: String, job: String, mgr: scala.Option[Long], sal: Double)
|
||
|
||
// 2.定义聚合操作的中间输出类型
|
||
case class SumAndCount(var sum: Double, var count: Long)
|
||
|
||
/* 3.自定义聚合函数
|
||
* @IN 聚合操作的输入类型
|
||
* @BUF reduction操作输出值的类型
|
||
* @OUT 聚合操作的输出类型
|
||
*/
|
||
object MyAverage extends Aggregator[Emp, SumAndCount, Double] {
|
||
|
||
// 4.用于聚合操作的的初始零值
|
||
override def zero: SumAndCount = SumAndCount(0, 0)
|
||
|
||
// 5.同一分区中的reduce操作
|
||
override def reduce(avg: SumAndCount, emp: Emp): SumAndCount = {
|
||
avg.sum += emp.sal
|
||
avg.count += 1
|
||
avg
|
||
}
|
||
|
||
// 6.不同分区中的merge操作
|
||
override def merge(avg1: SumAndCount, avg2: SumAndCount): SumAndCount = {
|
||
avg1.sum += avg2.sum
|
||
avg1.count += avg2.count
|
||
avg1
|
||
}
|
||
|
||
// 7.定义最终的输出类型
|
||
override def finish(reduction: SumAndCount): Double = reduction.sum / reduction.count
|
||
|
||
// 8.中间类型的编码转换
|
||
override def bufferEncoder: Encoder[SumAndCount] = Encoders.product
|
||
|
||
// 9.输出类型的编码转换
|
||
override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
|
||
}
|
||
|
||
object SparkSqlApp {
|
||
|
||
// 测试方法
|
||
def main(args: Array[String]): Unit = {
|
||
|
||
val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate()
|
||
import spark.implicits._
|
||
val ds = spark.read.json("file/emp.json").as[Emp]
|
||
|
||
// 10.使用内置avg()函数和自定义函数分别进行计算,验证自定义函数是否正确
|
||
val myAvg = ds.select(MyAverage.toColumn.name("average_sal")).first()
|
||
val avg = ds.select(functions.avg(ds.col("sal"))).first().get(0)
|
||
|
||
println("自定义average函数 : " + myAvg)
|
||
println("内置的average函数 : " + avg)
|
||
}
|
||
}
|
||
```
|
||
|
||
自定义聚合函数需要实现的方法比较多,这里以绘图的方式来演示其执行流程,以及每个方法的作用:
|
||
|
||

|
||
|
||
|
||
|
||
关于`zero`,`reduce`,`merge`,`finish`方法的作用在上图都有说明,这里解释一下中间类型和输出类型的编码转换,这个写法比较固定,基本上就是两种情况:
|
||
|
||
+ 自定义类型case class或者元组就使用`Encoders.product`方法;
|
||
+ 基本类型就使用其对应名称的方法,如`scalaByte `,`scalaFloat`,`scalaShort`等。
|
||
|
||
```scala
|
||
override def bufferEncoder: Encoder[SumAndCount] = Encoders.product
|
||
override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
|
||
```
|
||
|
||
|
||
|
||
### 6.2 无类型的自定义聚合函数
|
||
|
||
理解了有类型的自定义聚合函数后,无类型的定义方式也基本相同,代码如下:
|
||
|
||
```scala
|
||
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
|
||
import org.apache.spark.sql.types._
|
||
import org.apache.spark.sql.{Row, SparkSession}
|
||
|
||
object MyAverage extends UserDefinedAggregateFunction {
|
||
// 1.聚合操作输入参数的类型,字段名称可以自定义
|
||
def inputSchema: StructType = StructType(StructField("MyInputColumn", LongType) :: Nil)
|
||
|
||
// 2.聚合操作中间值的类型,字段名称可以自定义
|
||
def bufferSchema: StructType = {
|
||
StructType(StructField("sum", LongType) :: StructField("MyCount", LongType) :: Nil)
|
||
}
|
||
|
||
// 3.聚合操作输出参数的类型
|
||
def dataType: DataType = DoubleType
|
||
|
||
// 4.此函数是否始终在相同输入上返回相同的输出,通常为true
|
||
def deterministic: Boolean = true
|
||
|
||
// 5.定义零值
|
||
def initialize(buffer: MutableAggregationBuffer): Unit = {
|
||
buffer(0) = 0L
|
||
buffer(1) = 0L
|
||
}
|
||
|
||
// 6.同一分区中的reduce操作
|
||
def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
|
||
if (!input.isNullAt(0)) {
|
||
buffer(0) = buffer.getLong(0) + input.getLong(0)
|
||
buffer(1) = buffer.getLong(1) + 1
|
||
}
|
||
}
|
||
|
||
// 7.不同分区中的merge操作
|
||
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
|
||
buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
|
||
buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
|
||
}
|
||
|
||
// 8.计算最终的输出值
|
||
def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1)
|
||
}
|
||
|
||
object SparkSqlApp {
|
||
|
||
// 测试方法
|
||
def main(args: Array[String]): Unit = {
|
||
|
||
val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate()
|
||
// 9.注册自定义的聚合函数
|
||
spark.udf.register("myAverage", MyAverage)
|
||
|
||
val df = spark.read.json("file/emp.json")
|
||
df.createOrReplaceTempView("emp")
|
||
|
||
// 10.使用自定义函数和内置函数分别进行计算
|
||
val myAvg = spark.sql("SELECT myAverage(sal) as avg_sal FROM emp").first()
|
||
val avg = spark.sql("SELECT avg(sal) as avg_sal FROM emp").first()
|
||
|
||
println("自定义average函数 : " + myAvg)
|
||
println("内置的average函数 : " + avg)
|
||
}
|
||
}
|
||
```
|
||
|
||
|
||
|
||
## 参考资料
|
||
|
||
[Spark SQL, DataFrames and Datasets Guide > Getting Started](https://spark.apache.org/docs/latest/sql-getting-started.html) |