283 lines
6.6 KiB
Markdown
283 lines
6.6 KiB
Markdown
# Map & Tuple
|
||
|
||
<nav>
|
||
<a href="#一映射Map">一、映射(Map)</a><br/>
|
||
<a href="#11-构造Map">1.1 构造Map</a><br/>
|
||
<a href="#12-获取值">1.2 获取值</a><br/>
|
||
<a href="#13-新增修改删除值">1.3 新增/修改/删除值</a><br/>
|
||
<a href="#14-遍历Map">1.4 遍历Map</a><br/>
|
||
<a href="#15-yield关键字">1.5 yield关键字</a><br/>
|
||
<a href="#16-其他Map结构">1.6 其他Map结构</a><br/>
|
||
<a href="#17-可选方法">1.7 可选方法</a><br/>
|
||
<a href="#18-与Java互操作">1.8 与Java互操作</a><br/>
|
||
<a href="#二元组Tuple">二、元组(Tuple)</a><br/>
|
||
<a href="#21--模式匹配">2.1 模式匹配</a><br/>
|
||
<a href="#22-zip方法">2.2 zip方法</a><br/>
|
||
</nav>
|
||
|
||
|
||
|
||
## 一、映射(Map)
|
||
|
||
### 1.1 构造Map
|
||
|
||
```scala
|
||
// 初始化一个空 map
|
||
val scores01 = new HashMap[String, Int]
|
||
|
||
// 从指定的值初始化 Map(方式一)
|
||
val scores02 = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||
|
||
// 从指定的值初始化 Map(方式二)
|
||
val scores03 = Map(("hadoop", 10), ("spark", 20), ("storm", 30))
|
||
```
|
||
|
||
采用上面方式得到的都是不可变 Map(immutable map),想要得到可变 Map(mutable map),则需要使用:
|
||
|
||
```scala
|
||
val scores04 = scala.collection.mutable.Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||
```
|
||
|
||
### 1.2 获取值
|
||
|
||
```scala
|
||
object ScalaApp extends App {
|
||
|
||
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||
|
||
// 1.获取指定 key 对应的值
|
||
println(scores("hadoop"))
|
||
|
||
// 2. 如果对应的值不存在则使用默认值
|
||
println(scores.getOrElse("hadoop01", 100))
|
||
}
|
||
```
|
||
|
||
### 1.3 新增/修改/删除值
|
||
|
||
可变 Map 允许进行新增、修改、删除等操作。
|
||
|
||
```scala
|
||
object ScalaApp extends App {
|
||
|
||
val scores = scala.collection.mutable.Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||
|
||
// 1.如果 key 存在则更新
|
||
scores("hadoop") = 100
|
||
|
||
// 2.如果 key 不存在则新增
|
||
scores("flink") = 40
|
||
|
||
// 3.可以通过 += 来进行多个更新或新增操作
|
||
scores += ("spark" -> 200, "hive" -> 50)
|
||
|
||
// 4.可以通过 -= 来移除某个键和值
|
||
scores -= "storm"
|
||
|
||
for (elem <- scores) {println(elem)}
|
||
}
|
||
|
||
// 输出内容如下
|
||
(spark,200)
|
||
(hadoop,100)
|
||
(flink,40)
|
||
(hive,50)
|
||
```
|
||
|
||
不可变 Map 不允许进行新增、修改、删除等操作,但是允许由不可变 Map 产生新的 Map。
|
||
|
||
```scala
|
||
object ScalaApp extends App {
|
||
|
||
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||
|
||
val newScores = scores + ("spark" -> 200, "hive" -> 50)
|
||
|
||
for (elem <- scores) {println(elem)}
|
||
|
||
}
|
||
|
||
// 输出内容如下
|
||
(hadoop,10)
|
||
(spark,200)
|
||
(storm,30)
|
||
(hive,50)
|
||
```
|
||
|
||
### 1.4 遍历Map
|
||
|
||
```java
|
||
object ScalaApp extends App {
|
||
|
||
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||
|
||
// 1. 遍历键
|
||
for (key <- scores.keys) { println(key) }
|
||
|
||
// 2. 遍历值
|
||
for (value <- scores.values) { println(value) }
|
||
|
||
// 3. 遍历键值对
|
||
for ((key, value) <- scores) { println(key + ":" + value) }
|
||
|
||
}
|
||
```
|
||
|
||
### 1.5 yield关键字
|
||
|
||
可以使用 `yield` 关键字从现有 Map 产生新的 Map。
|
||
|
||
```scala
|
||
object ScalaApp extends App {
|
||
|
||
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||
|
||
// 1.将 scores 中所有的值扩大 10 倍
|
||
val newScore = for ((key, value) <- scores) yield (key, value * 10)
|
||
for (elem <- newScore) { println(elem) }
|
||
|
||
|
||
// 2.将键和值互相调换
|
||
val reversalScore: Map[Int, String] = for ((key, value) <- scores) yield (value, key)
|
||
for (elem <- reversalScore) { println(elem) }
|
||
|
||
}
|
||
|
||
// 输出
|
||
(hadoop,100)
|
||
(spark,200)
|
||
(storm,300)
|
||
|
||
(10,hadoop)
|
||
(20,spark)
|
||
(30,storm)
|
||
```
|
||
|
||
### 1.6 其他Map结构
|
||
|
||
在使用 Map 时候,如果不指定,默认使用的是 HashMap,如果想要使用 `TreeMap` 或者 `LinkedHashMap`,则需要显式的指定。
|
||
|
||
```scala
|
||
object ScalaApp extends App {
|
||
|
||
// 1.使用 TreeMap,按照键的字典序进行排序
|
||
val scores01 = scala.collection.mutable.TreeMap("B" -> 20, "A" -> 10, "C" -> 30)
|
||
for (elem <- scores01) {println(elem)}
|
||
|
||
// 2.使用 LinkedHashMap,按照键值对的插入顺序进行排序
|
||
val scores02 = scala.collection.mutable.LinkedHashMap("B" -> 20, "A" -> 10, "C" -> 30)
|
||
for (elem <- scores02) {println(elem)}
|
||
}
|
||
|
||
// 输出
|
||
(A,10)
|
||
(B,20)
|
||
(C,30)
|
||
|
||
(B,20)
|
||
(A,10)
|
||
(C,30)
|
||
```
|
||
|
||
### 1.7 可选方法
|
||
|
||
```scala
|
||
object ScalaApp extends App {
|
||
|
||
val scores = scala.collection.mutable.TreeMap("B" -> 20, "A" -> 10, "C" -> 30)
|
||
|
||
// 1. 获取长度
|
||
println(scores.size)
|
||
|
||
// 2. 判断是否为空
|
||
println(scores.isEmpty)
|
||
|
||
// 3. 判断是否包含特定的 key
|
||
println(scores.contains("A"))
|
||
|
||
}
|
||
```
|
||
|
||
### 1.8 与Java互操作
|
||
|
||
```scala
|
||
import java.util
|
||
import scala.collection.{JavaConverters, mutable}
|
||
|
||
object ScalaApp extends App {
|
||
|
||
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||
|
||
// scala map 转 java map
|
||
val javaMap: util.Map[String, Int] = JavaConverters.mapAsJavaMap(scores)
|
||
|
||
// java map 转 scala map
|
||
val scalaMap: mutable.Map[String, Int] = JavaConverters.mapAsScalaMap(javaMap)
|
||
|
||
for (elem <- scalaMap) {println(elem)}
|
||
}
|
||
```
|
||
|
||
|
||
|
||
## 二、元组(Tuple)
|
||
|
||
元组与数组类似,但是数组中所有的元素必须是同一种类型,而元组则可以包含不同类型的元素。
|
||
|
||
```scala
|
||
scala> val tuple=(1,3.24f,"scala")
|
||
tuple: (Int, Float, String) = (1,3.24,scala)
|
||
```
|
||
|
||
### 2.1 模式匹配
|
||
|
||
可以通过模式匹配来获取元组中的值并赋予对应的变量:
|
||
|
||
```scala
|
||
scala> val (a,b,c)=tuple
|
||
a: Int = 1
|
||
b: Float = 3.24
|
||
c: String = scala
|
||
```
|
||
|
||
如果某些位置不需要赋值,则可以使用下划线代替:
|
||
|
||
```scala
|
||
scala> val (a,_,_)=tuple
|
||
a: Int = 1
|
||
```
|
||
|
||
### 2.2 zip方法
|
||
|
||
```scala
|
||
object ScalaApp extends App {
|
||
|
||
val array01 = Array("hadoop", "spark", "storm")
|
||
val array02 = Array(10, 20, 30)
|
||
|
||
// 1.zip 方法得到的是多个 tuple 组成的数组
|
||
val tuples: Array[(String, Int)] = array01.zip(array02)
|
||
// 2.也可以在 zip 后调用 toMap 方法转换为 Map
|
||
val map: Map[String, Int] = array01.zip(array02).toMap
|
||
|
||
for (elem <- tuples) { println(elem) }
|
||
for (elem <- map) {println(elem)}
|
||
}
|
||
|
||
// 输出
|
||
(hadoop,10)
|
||
(spark,20)
|
||
(storm,30)
|
||
|
||
(hadoop,10)
|
||
(spark,20)
|
||
(storm,30)
|
||
```
|
||
|
||
|
||
|
||
## 参考资料
|
||
|
||
1. Martin Odersky . Scala 编程 (第 3 版)[M] . 电子工业出版社 . 2018-1-1
|
||
2. 凯.S.霍斯特曼 . 快学 Scala(第 2 版)[M] . 电子工业出版社 . 2017-7
|