201 lines
15 KiB
Markdown
201 lines
15 KiB
Markdown
# BigData-Notes
|
||
|
||
|
||
|
||
<div align="center"> <img width="470px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/bigdata-notes-icon.png"/> </div>
|
||
<br/>
|
||
|
||
> **大数据入门指南 ( 2019 )**
|
||
|
||
|
||
|
||
<table>
|
||
<tr>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hadoop.jpg"></th>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hive.jpg"></th>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/spark.jpg"></th>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/storm.png"></th>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/flink.png"></th>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hbase.png"></th>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/kafka.png"></th>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/zookeeper.jpg"></th>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/flume.png"></th>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/sqoop.png"></th>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/azkaban.png"></th>
|
||
<th><img width="50px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/scala.jpg"></th>
|
||
</tr>
|
||
<tr>
|
||
<td align="center"><a href="#一hadoop">Hadoop</a></td>
|
||
<td align="center"><a href="#二hive">Hive</a></td>
|
||
<td align="center"><a href="#三spark">Spark</a></td>
|
||
<td align="center"><a href="#四storm">Storm</a></td>
|
||
<td align="center"><a href="#五flink">Flink</a></td>
|
||
<td align="center"><a href="#六hbase">HBase</a></td>
|
||
<td align="center"><a href="#七kafka">Kafka</a></td>
|
||
<td align="center"><a href="#八zookeeper">Zookeeper</a></td>
|
||
<td align="center"><a href="#九flume">Flume</a></td>
|
||
<td align="center"><a href="#十sqoop">Sqoop</a></td>
|
||
<td align="center"><a href="#十一azkaban">Azkaban</a></td>
|
||
<td align="center"><a href="#十二scala">Scala</a></td>
|
||
</tr>
|
||
</table>
|
||
<br/>
|
||
|
||
>**离线版本使用说明**:为方便大家查看,本仓库新增离线版本。Clone 到本地后,使用 Markdown 阅读器即可查看,我个人使用的是 [Typora]( https://www.typora.io/ ) 。离线版本的导航页为 : *OFFLINE-README.md* ,按住 `Ctrl` 键并点击目录,即可打开对应文章。
|
||
|
||
|
||
|
||
## :black_nib: 前 言
|
||
|
||
1. [大数据学习路线](https://github.com/heibaiying/BigData-Notes/blob/master/notes/大数据学习路线.md)
|
||
2. [大数据技术栈思维导图](https://github.com/heibaiying/BigData-Notes/blob/master/notes/大数据技术栈思维导图.md)
|
||
3. [大数据常用软件安装指南](https://github.com/heibaiying/BigData-Notes/blob/master/notes/大数据常用软件安装指南.md)
|
||
|
||
## 一、Hadoop
|
||
|
||
1. [分布式文件存储系统 —— HDFS](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hadoop-HDFS.md)
|
||
2. [分布式计算框架 —— MapReduce](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hadoop-MapReduce.md)
|
||
3. [集群资源管理器 —— YARN](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hadoop-YARN.md)
|
||
4. [Hadoop 单机伪集群环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Hadoop单机环境搭建.md)
|
||
5. [Hadoop 集群环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Hadoop集群环境搭建.md)
|
||
6. [HDFS 常用 Shell 命令](https://github.com/heibaiying/BigData-Notes/blob/master/notes/HDFS常用Shell命令.md)
|
||
7. [HDFS Java API 的使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/HDFS-Java-API.md)
|
||
8. [基于 Zookeeper 搭建 Hadoop 高可用集群](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/基于Zookeeper搭建Hadoop高可用集群.md)
|
||
|
||
## 二、Hive
|
||
|
||
1. [Hive 简介及核心概念](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hive简介及核心概念.md)
|
||
2. [Linux 环境下 Hive 的安装部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux环境下Hive的安装部署.md)
|
||
4. [Hive CLI 和 Beeline 命令行的基本使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/HiveCLI和Beeline命令行的基本使用.md)
|
||
6. [Hive 常用 DDL 操作](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hive常用DDL操作.md)
|
||
7. [Hive 分区表和分桶表](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hive分区表和分桶表.md)
|
||
8. [Hive 视图和索引](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hive视图和索引.md)
|
||
9. [Hive常用 DML 操作](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hive常用DML操作.md)
|
||
10. [Hive 数据查询详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hive数据查询详解.md)
|
||
|
||
## 三、Spark
|
||
|
||
**Spark Core :**
|
||
|
||
1. [Spark 简介](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark简介.md)
|
||
2. [Spark 开发环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Spark开发环境搭建.md)
|
||
4. [弹性式数据集 RDD](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark_RDD.md)
|
||
5. [RDD 常用算子详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark_Transformation和Action算子.md)
|
||
5. [Spark 运行模式与作业提交](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark部署模式与作业提交.md)
|
||
6. [Spark 累加器与广播变量](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark累加器与广播变量.md)
|
||
7. [基于 Zookeeper 搭建 Spark 高可用集群](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Spark集群环境搭建.md)
|
||
|
||
**Spark SQL :**
|
||
|
||
1. [DateFrame 和 DataSet ](https://github.com/heibaiying/BigData-Notes/blob/master/notes/SparkSQL_Dataset和DataFrame简介.md)
|
||
2. [Structured API 的基本使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark_Structured_API的基本使用.md)
|
||
3. [Spark SQL 外部数据源](https://github.com/heibaiying/BigData-Notes/blob/master/notes/SparkSQL外部数据源.md)
|
||
4. [Spark SQL 常用聚合函数](https://github.com/heibaiying/BigData-Notes/blob/master/notes/SparkSQL常用聚合函数.md)
|
||
5. [Spark SQL JOIN 操作](https://github.com/heibaiying/BigData-Notes/blob/master/notes/SparkSQL联结操作.md)
|
||
|
||
**Spark Streaming :**
|
||
|
||
1. [Spark Streaming 简介](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark_Streaming与流处理.md)
|
||
2. [Spark Streaming 基本操作](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark_Streaming基本操作.md)
|
||
3. [Spark Streaming 整合 Flume](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark_Streaming整合Flume.md)
|
||
4. [Spark Streaming 整合 Kafka](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark_Streaming整合Kafka.md)
|
||
|
||
## 四、Storm
|
||
|
||
1. [Storm 和流处理简介](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm和流处理简介.md)
|
||
2. [Storm 核心概念详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm核心概念详解.md)
|
||
3. [Storm 单机环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Storm单机环境搭建.md)
|
||
4. [Storm 集群环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Storm集群环境搭建.md)
|
||
5. [Storm 编程模型详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm编程模型详解.md)
|
||
6. [Storm 项目三种打包方式对比分析](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm三种打包方式对比分析.md)
|
||
7. [Storm 集成 Redis 详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm集成Redis详解.md)
|
||
8. [Storm 集成 HDFS/HBase](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm集成HBase和HDFS.md)
|
||
9. [Storm 集成 Kafka](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm集成Kakfa.md)
|
||
|
||
## 五、Flink
|
||
|
||
1. [Flink 核心概念综述](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flink核心概念综述.md)
|
||
2. [Flink 开发环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flink开发环境搭建.md)
|
||
3. [Flink Data Source](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flink_Data_Source.md)
|
||
4. [Flink Data Transformation](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flink_Data_Transformation.md)
|
||
4. [Flink Data Sink](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flink_Data_Sink.md)
|
||
6. [Flink 窗口模型](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flink_Windows.md)
|
||
7. [Flink 状态管理与检查点机制](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flink状态管理与检查点机制.md)
|
||
8. [Flink Standalone 集群部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Flink_Standalone_Cluster.md)
|
||
|
||
|
||
## 六、HBase
|
||
|
||
1. [Hbase 简介](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase简介.md)
|
||
2. [HBase 系统架构及数据结构](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase系统架构及数据结构.md)
|
||
3. [HBase 基本环境搭建 (Standalone /pseudo-distributed mode)](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/HBase单机环境搭建.md)
|
||
4. [HBase 集群环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/HBase集群环境搭建.md)
|
||
5. [HBase 常用 Shell 命令](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase_Shell.md)
|
||
6. [HBase Java API](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase_Java_API.md)
|
||
7. [Hbase 过滤器详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase过滤器详解.md)
|
||
8. [HBase 协处理器详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase协处理器详解.md)
|
||
9. [HBase 容灾与备份](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase容灾与备份.md)
|
||
10. [HBase的 SQL 中间层 —— Phoenix](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase的SQL中间层_Phoenix.md)
|
||
11. [Spring/Spring Boot 整合 Mybatis + Phoenix](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spring+Mybtais+Phoenix整合.md)
|
||
|
||
## 七、Kafka
|
||
|
||
1. [Kafka 简介](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Kafka简介.md)
|
||
2. [基于 Zookeeper 搭建 Kafka 高可用集群](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/基于Zookeeper搭建Kafka高可用集群.md)
|
||
3. [Kafka 生产者详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Kafka生产者详解.md)
|
||
4. [Kafka 消费者详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Kafka消费者详解.md)
|
||
5. [深入理解 Kafka 副本机制](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Kafka深入理解分区副本机制.md)
|
||
|
||
## 八、Zookeeper
|
||
|
||
1. [Zookeeper 简介及核心概念](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Zookeeper简介及核心概念.md)
|
||
2. [Zookeeper 单机环境和集群环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Zookeeper单机环境和集群环境搭建.md)
|
||
3. [Zookeeper 常用 Shell 命令](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Zookeeper常用Shell命令.md)
|
||
4. [Zookeeper Java 客户端 —— Apache Curator](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Zookeeper_Java客户端Curator.md)
|
||
5. [Zookeeper ACL 权限控制](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Zookeeper_ACL权限控制.md)
|
||
|
||
## 九、Flume
|
||
|
||
1. [Flume 简介及基本使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flume简介及基本使用.md)
|
||
2. [Linux 环境下 Flume 的安装部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux下Flume的安装.md)
|
||
3. [Flume 整合 Kafka](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flume整合Kafka.md)
|
||
|
||
## 十、Sqoop
|
||
|
||
1. [Sqoop 简介与安装](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Sqoop简介与安装.md)
|
||
2. [Sqoop 的基本使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Sqoop基本使用.md)
|
||
|
||
## 十一、Azkaban
|
||
|
||
1. [Azkaban 简介](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Azkaban简介.md)
|
||
2. [Azkaban3.x 编译及部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Azkaban_3.x_编译及部署.md)
|
||
3. [Azkaban Flow 1.0 的使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Azkaban_Flow_1.0_的使用.md)
|
||
4. [Azkaban Flow 2.0 的使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Azkaban_Flow_2.0_的使用.md)
|
||
|
||
## 十二、Scala
|
||
|
||
1. [Scala 简介及开发环境配置](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala简介及开发环境配置.md)
|
||
2. [基本数据类型和运算符](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala基本数据类型和运算符.md)
|
||
3. [流程控制语句](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala流程控制语句.md)
|
||
4. [数组 —— Array](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala数组.md)
|
||
5. [集合类型综述](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala集合类型.md)
|
||
6. [常用集合类型之 —— List & Set](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala列表和集.md)
|
||
7. [常用集合类型之 —— Map & Tuple](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala映射和元组.md)
|
||
8. [类和对象](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala类和对象.md)
|
||
9. [继承和特质](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala继承和特质.md)
|
||
10. [函数 & 闭包 & 柯里化](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala函数和闭包.md)
|
||
11. [模式匹配](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala模式匹配.md)
|
||
12. [类型参数](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala类型参数.md)
|
||
13. [隐式转换和隐式参数](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala隐式转换和隐式参数.md)
|
||
|
||
|
||
## 十三、公共内容
|
||
|
||
1. [大数据应用常用打包方式](https://github.com/heibaiying/BigData-Notes/blob/master/notes/大数据应用常用打包方式.md)
|
||
|
||
<br>
|
||
|
||
## :bookmark_tabs: 后 记
|
||
|
||
[资料分享与开发工具推荐](https://github.com/heibaiying/BigData-Notes/blob/master/notes/资料分享与工具推荐.md)
|