9.0 KiB
Hive基本概念讲解
一、数据类型二、文件格式
三、存储格式
一、数据类型
1.1 基本数据类型
Hive表中的列支持以下基本数据类型:
大类 | 类型 |
---|---|
Integers(整型) | TINYINT—1字节的有符号整数 SMALLINT—2字节的有符号整数 INT—4字节的有符号整数 BIGINT—8字节的有符号整数 |
Boolean(布尔型) | BOOLEAN—TRUE/FALSE |
Floating point numbers(浮点型) | FLOAT— 单精度浮点型 DOUBLE—双精度浮点型 |
Fixed point numbers(定点数) | DECIMAL—用户自定义精度定点数,比如DECIMAL(7,2) |
String types(字符串) | STRING—指定字符集的字符序列 VARCHAR—具有最大长度限制的字符序列 CHAR—固定长度的字符序列 |
Date and time types(日期时间类型) | TIMESTAMP — 时间戳 TIMESTAMP WITH LOCAL TIME ZONE — 时间戳,纳秒精度 DATE—日期类型 |
Binary types(二进制类型) | BINARY—字节序列 |
TIMESTAMP 和 TIMESTAMP WITH LOCAL TIME ZONE 的区别:
TIMESTAMP WITH LOCAL TIME ZONE:用户提交时间给数据库时,该类型会转换成数据库的时区来保存。查询时则按照查询客户端的不同,转换为查询客户端所在的时区的时间。
TIMESTAMP :提交什么时间就保存什么时间,查询时也不做任何转换。
1.2 隐式转换
Hive中基本数据类型遵循以下的层次结构,按照这个层次结构,子类型到祖先类型允许隐式转换。例如INT类型的数据允许隐式转换为BIGINT类型。额外注意的是:按照类型层次结构允许将STRING类型隐式转换为DOUBLE类型。

1.3 复杂类型
类型 | 描述 | 示例 |
---|---|---|
STRUCT | 类似于对象,是字段的集合,字段的类型可以不同,可以使用 名称.字段名 方式进行访问 |
STRUCT ('xiaoming', 12 , '2018-12-12') |
MAP | 键值对的集合,可以使用名称[key] 的方式访问对应的值 |
map('a', 1, 'b', 2) |
ARRAY | 数组是一组具有相同类型和名称的变量的集合,可以使用名称[index] 访问对应的值 |
ARRAY('a', 'b', 'c', 'd') |
1.4 示例
如下给出一个基本数据类型和复杂数据类型的使用示例:
CREATE TABLE students(
name STRING, -- 姓名
age INT, -- 年龄
subject ARRAY<STRING>, --学科
score MAP<STRING,FLOAT>, --各个学科考试成绩
address STRUCT<houseNumber:int, street:STRING, city:STRING, province:STRING> --家庭居住地址
) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";
二、内容格式
当数据存储在文本文件中,必须按照一定格式区别行和列,比如使用逗号作为分隔符的CSV文件(Comma-Separated Values)或者使用制表符作为分隔值的TSV文件(Tab-Separated Values)。但是使用这些字符作为分隔符的时候存在一个缺点,就是正常的文件内容中也可能出现逗号或者制表符。
所以Hive默认使用了几个平时很少出现的字符,这些字符一般不会作为内容出现在文件中。Hive默认的行和列分隔符如下表所示。
分隔符 | 描述 |
---|---|
\n | 对于文本文件来说,每行是一条记录,所以可以使用换行符来分割记录 |
^A (Ctrl+A) | 分割字段(列),在CREATE TABLE语句中也可以使用八进制编码 \001 来表示 |
^B | 用于分割 ARRAY 或者 STRUCT 中的元素,或者用于 MAP 中键值对之间的分割, 在CREATE TABLE语句中也可以使用八进制编码 \002 表示 |
^C | 用于 MAP 中键和值之间的分割,在CREATE TABLE语句中也可以使用八进制编码\003 表示 |
使用示例如下:
CREATE TABLE page_view(viewTime INT, userid BIGINT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'
COLLECTION ITEMS TERMINATED BY '\002'
MAP KEYS TERMINATED BY '\003'
STORED AS SEQUENCEFILE;
三、存储格式
3.1 支持的存储格式
Hive会在HDFS为每个数据库上创建一个目录,数据库中的表是该目录的子目录,表中的数据会以文件的形式存储在对应的表目录下。Hive支持以下几种文件存储格式:
格式 | 说明 |
---|---|
TextFile | 存储为纯文本文件。 这是Hive默认的文件存储格式。这种存储方式数据不做压缩,磁盘开销大,数据解析开销大。 |
SequenceFile | SequenceFile是Hadoop API提供的一种二进制文件,它将数据以<key,value>的形式序列化到文件中。这种二进制文件内部使用Hadoop的标准的Writable 接口实现序列化和反序列化。它与Hadoop API中的MapFile 是互相兼容的。Hive中的SequenceFile 继承自Hadoop API 的SequenceFile,不过它的key为空,使用value 存放实际的值,这样是为了避免MR 在运行map阶段的排序过程。 |
RCFile | RCFile文件格式是FaceBook开源的一种Hive的文件存储格式,首先将表分为几个行组,对每个行组内的数据进行按列存储,每一列的数据都是分开存储。 |
ORC Files | ORC是在一定程度上扩展了RCFile,是对RCFile的优化。 |
Avro Files | Avro是一个数据序列化系统,设计用于支持大批量数据交换的应用。它的主要特点有:支持二进制序列化方式,可以便捷,快速地处理大量数据;动态语言友好,Avro提供的机制使动态语言可以方便地处理Avro数据。 |
Parquet | Parquet就是基于Dremel的数据模型和算法实现的,面向分析型业务的列式存储格式。辅以按列的高效压缩和编码技术,实现降低存储空间,提高IO效率,降低上层应用延迟。 |
以上压缩格式中ORC和parquet的综合性能突出,使用较为广泛,推荐使用这两种格式。
3.2 指定存储格式
通常在创建表的时候使用STORED AS
参数指定:
CREATE TABLE page_view(viewTime INT, userid BIGINT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\001'
COLLECTION ITEMS TERMINATED BY '\002'
MAP KEYS TERMINATED BY '\003'
STORED AS SEQUENCEFILE;
各个存储文件类型指定方式如下:
-
STORED AS TEXTFILE
-
STORED AS SEQUENCEFILE
-
STORED AS ORC
-
STORED AS PARQUET
-
STORED AS AVRO
-
STORED AS RCFILE
四、内部表和外部表
内部表又叫做管理表(Managed/Internal Table),创建表时不做任何指定,默认创建的就是内部表。想要创建外部表(External Table),则需要使用External进行修饰。 内部表和外部表主要区别如下:
内部表 | 外部表 | |
---|---|---|
数据存储位置 | 内部表数据存储的位置由hive.metastore.warehouse.dir参数指定,默认情况下表的数据存储在HDFS的/user/hive/warehouse/数据库名.db/表名/ 目录下 |
外部表数据的存储位置创建表时由Location 参数指定; |
导入数据 | 在导入数据到内部表,内部表将数据移动到自己的数据仓库目录下,数据的生命周期由Hive来进行管理 | 外部表不会将数据移动到自己的数据仓库目录下,只是在元数据中存储了数据的位置 |
删除表 | 删除元数据(metadata)和文件 | 只删除元数据(metadata) |