fix(vector_store): add bounds checking for chunk ID generation

Prevents potential integer overflow when start_id is near sys.maxsize.
Adds validation before range() calculation in batch insert methods.

Fixes: ISS-1766921318981-6

Solution-ID: SOL-1735386000-6
Issue-ID: ISS-1766921318981-6
Task-ID: T1
This commit is contained in:
catlog22
2025-12-29 20:02:19 +08:00
parent d532b3fd02
commit 0c8b2f2ec9
2 changed files with 95 additions and 2 deletions

View File

@@ -11,6 +11,7 @@ from __future__ import annotations
import json
import logging
import sys
import sqlite3
import threading
from pathlib import Path
@@ -39,6 +40,24 @@ logger = logging.getLogger(__name__)
# Epsilon used to guard against floating point precision edge cases (e.g., near-zero norms).
EPSILON = 1e-10
# SQLite INTEGER PRIMARY KEY uses signed 64-bit rowids.
SQLITE_INTEGER_MAX = (1 << 63) - 1
def _validate_chunk_id_range(start_id: int, count: int) -> None:
"""Validate that a batch insert can safely generate sequential chunk IDs."""
if count <= 0:
return
last_id = start_id + count - 1
if last_id > sys.maxsize or last_id > SQLITE_INTEGER_MAX:
raise ValueError(
"Chunk ID range overflow: "
f"start_id={start_id}, count={count} would allocate up to {last_id}, "
f"exceeding limits (sys.maxsize={sys.maxsize}, sqlite_max={SQLITE_INTEGER_MAX}). "
"Consider cleaning up the index database or creating a new index database."
)
def _cosine_similarity(a: List[float], b: List[float]) -> float:
"""Compute cosine similarity between two vectors."""
@@ -465,6 +484,8 @@ class VectorStore:
if not chunks_with_paths:
return []
batch_size = len(chunks_with_paths)
# Prepare batch data
batch_data = []
embeddings_list = []
@@ -487,6 +508,8 @@ class VectorStore:
row = conn.execute("SELECT MAX(id) FROM semantic_chunks").fetchone()
start_id = (row[0] or 0) + 1
_validate_chunk_id_range(start_id, batch_size)
conn.executemany(
"""
INSERT INTO semantic_chunks (file_path, content, embedding, metadata)
@@ -496,7 +519,7 @@ class VectorStore:
)
conn.commit()
# Calculate inserted IDs based on starting ID
ids = list(range(start_id, start_id + len(chunks_with_paths)))
ids = list(range(start_id, start_id + batch_size))
# Handle ANN index updates
if embeddings_list and update_ann and self._ensure_ann_index(len(embeddings_list[0])):
@@ -543,6 +566,8 @@ class VectorStore:
if not chunks_with_paths:
return []
batch_size = len(chunks_with_paths)
if len(chunks_with_paths) != embeddings_matrix.shape[0]:
raise ValueError(
f"Mismatch: {len(chunks_with_paths)} chunks but "
@@ -566,6 +591,8 @@ class VectorStore:
row = conn.execute("SELECT MAX(id) FROM semantic_chunks").fetchone()
start_id = (row[0] or 0) + 1
_validate_chunk_id_range(start_id, batch_size)
conn.executemany(
"""
INSERT INTO semantic_chunks (file_path, content, embedding, metadata)
@@ -575,7 +602,7 @@ class VectorStore:
)
conn.commit()
# Calculate inserted IDs based on starting ID
ids = list(range(start_id, start_id + len(chunks_with_paths)))
ids = list(range(start_id, start_id + batch_size))
# Handle ANN index updates
if update_ann and self._ensure_ann_index(embeddings_matrix.shape[1]):

View File

@@ -1,3 +1,5 @@
import sqlite3
import sys
import tempfile
import threading
import time
@@ -251,3 +253,67 @@ def test_search_with_ann_valid_results(monkeypatch: pytest.MonkeyPatch, temp_db:
results = store._search_with_ann(np.array([1.0, 0.0, 0.0], dtype=np.float32), top_k=10, min_score=0.0, return_full_content=False)
assert [r.path for r in results] == ["a.py"]
assert results[0].score == pytest.approx(1.0)
def test_add_chunks_batch_overflow(monkeypatch: pytest.MonkeyPatch, temp_db: Path) -> None:
"""add_chunks_batch should fail fast when generated IDs would exceed SQLite/sys bounds."""
monkeypatch.setattr(vector_store_module, "HNSWLIB_AVAILABLE", False)
store = VectorStore(temp_db)
seed_embedding = np.array([1.0, 0.0, 0.0], dtype=np.float32).tobytes()
with sqlite3.connect(store.db_path) as conn:
conn.execute(
"INSERT INTO semantic_chunks (id, file_path, content, embedding, metadata) VALUES (?, ?, ?, ?, ?)",
(sys.maxsize - 5, "seed.py", "seed", seed_embedding, None),
)
conn.commit()
chunks_with_paths: list[tuple[SemanticChunk, str]] = []
for i in range(10):
chunks_with_paths.append(
(
SemanticChunk(content=f"chunk {i}", metadata={}, embedding=[1.0, 0.0, 0.0]),
f"file_{i}.py",
)
)
with pytest.raises(ValueError, match=r"Chunk ID range overflow"):
store.add_chunks_batch(chunks_with_paths)
def test_add_chunks_batch_generates_sequential_ids(monkeypatch: pytest.MonkeyPatch, temp_db: Path) -> None:
"""add_chunks_batch should return sequential IDs for a fresh store."""
monkeypatch.setattr(vector_store_module, "HNSWLIB_AVAILABLE", False)
store = VectorStore(temp_db)
chunks_with_paths = [
(SemanticChunk(content="chunk A", metadata={}, embedding=[1.0, 0.0, 0.0]), "a.py"),
(SemanticChunk(content="chunk B", metadata={}, embedding=[0.0, 1.0, 0.0]), "b.py"),
]
ids = store.add_chunks_batch(chunks_with_paths, update_ann=False)
assert ids == [1, 2]
assert store.count_chunks() == 2
def test_add_chunks_batch_numpy_overflow(monkeypatch: pytest.MonkeyPatch, temp_db: Path) -> None:
"""add_chunks_batch_numpy should fail fast when generated IDs would exceed SQLite/sys bounds."""
monkeypatch.setattr(vector_store_module, "HNSWLIB_AVAILABLE", False)
store = VectorStore(temp_db)
seed_embedding = np.array([1.0, 0.0, 0.0], dtype=np.float32).tobytes()
with sqlite3.connect(store.db_path) as conn:
conn.execute(
"INSERT INTO semantic_chunks (id, file_path, content, embedding, metadata) VALUES (?, ?, ?, ?, ?)",
(sys.maxsize - 5, "seed.py", "seed", seed_embedding, None),
)
conn.commit()
chunks_with_paths = [
(SemanticChunk(content=f"chunk {i}", metadata={}), f"file_{i}.py")
for i in range(10)
]
embeddings = np.random.randn(10, 3).astype(np.float32)
with pytest.raises(ValueError, match=r"Chunk ID range overflow"):
store.add_chunks_batch_numpy(chunks_with_paths, embeddings)