mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-10 02:24:35 +08:00
feat: Implement association tree for LSP-based code relationship discovery
- Add `association_tree` module with components for building and processing call association trees using LSP call hierarchy capabilities. - Introduce `AssociationTreeBuilder` for constructing call trees from seed locations with depth-first expansion. - Create data structures: `TreeNode`, `CallTree`, and `UniqueNode` for representing nodes and relationships in the call tree. - Implement `ResultDeduplicator` to extract unique nodes from call trees and assign relevance scores based on depth, frequency, and kind. - Add unit tests for `AssociationTreeBuilder` and `ResultDeduplicator` to ensure functionality and correctness.
This commit is contained in:
@@ -1053,7 +1053,38 @@ class StandaloneLspManager:
|
||||
return []
|
||||
|
||||
return result
|
||||
|
||||
|
||||
async def get_outgoing_calls(
|
||||
self,
|
||||
item: Dict[str, Any],
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""Get outgoing calls for a call hierarchy item.
|
||||
|
||||
Args:
|
||||
item: CallHierarchyItem from get_call_hierarchy_items
|
||||
|
||||
Returns:
|
||||
List of CallHierarchyOutgoingCall dicts
|
||||
"""
|
||||
# Determine language from item's uri
|
||||
uri = item.get("uri", "")
|
||||
file_path = uri.replace("file:///", "").replace("file://", "")
|
||||
|
||||
state = await self._get_server(file_path)
|
||||
if not state:
|
||||
return []
|
||||
|
||||
result = await self._send_request(
|
||||
state,
|
||||
"callHierarchy/outgoingCalls",
|
||||
{"item": item},
|
||||
)
|
||||
|
||||
if not result or not isinstance(result, list):
|
||||
return []
|
||||
|
||||
return result
|
||||
|
||||
async def __aenter__(self) -> "StandaloneLspManager":
|
||||
"""Async context manager entry."""
|
||||
await self.start()
|
||||
|
||||
257
codex-lens/src/codexlens/search/association_tree/QUICK_START.md
Normal file
257
codex-lens/src/codexlens/search/association_tree/QUICK_START.md
Normal file
@@ -0,0 +1,257 @@
|
||||
# Association Tree Quick Start
|
||||
|
||||
## Installation
|
||||
|
||||
No additional dependencies needed - uses existing CodexLens LSP infrastructure.
|
||||
|
||||
## Basic Usage
|
||||
|
||||
### 1. Import Components
|
||||
|
||||
```python
|
||||
from codexlens.lsp.standalone_manager import StandaloneLspManager
|
||||
from codexlens.search.association_tree import (
|
||||
AssociationTreeBuilder,
|
||||
ResultDeduplicator,
|
||||
)
|
||||
```
|
||||
|
||||
### 2. Build a Tree
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
|
||||
async def build_tree_example():
|
||||
# Initialize LSP manager
|
||||
async with StandaloneLspManager(workspace_root="/path/to/project") as lsp:
|
||||
# Create builder
|
||||
builder = AssociationTreeBuilder(lsp, timeout=5.0)
|
||||
|
||||
# Build tree from seed location
|
||||
tree = await builder.build_tree(
|
||||
seed_file_path="src/main.py",
|
||||
seed_line=42, # 1-based line number
|
||||
seed_character=1, # 1-based character position
|
||||
max_depth=5, # Maximum recursion depth
|
||||
expand_callers=True, # Find who calls this
|
||||
expand_callees=True, # Find what this calls
|
||||
)
|
||||
|
||||
return tree
|
||||
|
||||
tree = asyncio.run(build_tree_example())
|
||||
print(f"Found {len(tree.all_nodes)} unique nodes")
|
||||
```
|
||||
|
||||
### 3. Deduplicate and Score
|
||||
|
||||
```python
|
||||
# Create deduplicator
|
||||
deduplicator = ResultDeduplicator(
|
||||
depth_weight=0.4, # Weight for depth score (0-1)
|
||||
frequency_weight=0.3, # Weight for frequency score (0-1)
|
||||
kind_weight=0.3, # Weight for symbol kind score (0-1)
|
||||
)
|
||||
|
||||
# Extract unique nodes
|
||||
unique_nodes = deduplicator.deduplicate(tree, max_results=20)
|
||||
|
||||
# Print results
|
||||
for node in unique_nodes:
|
||||
print(f"{node.name} @ {node.file_path}:{node.range.start_line}")
|
||||
print(f" Score: {node.score:.2f}, Depth: {node.min_depth}, Occurs: {node.occurrences}")
|
||||
```
|
||||
|
||||
### 4. Filter Results
|
||||
|
||||
```python
|
||||
# Filter by symbol kind
|
||||
functions = deduplicator.filter_by_kind(unique_nodes, ["function", "method"])
|
||||
|
||||
# Filter by file pattern
|
||||
core_modules = deduplicator.filter_by_file(unique_nodes, ["src/core/"])
|
||||
|
||||
# Convert to JSON
|
||||
json_data = deduplicator.to_dict_list(unique_nodes)
|
||||
```
|
||||
|
||||
## Common Patterns
|
||||
|
||||
### Pattern 1: Find All Callers
|
||||
|
||||
```python
|
||||
tree = await builder.build_tree(
|
||||
seed_file_path=target_file,
|
||||
seed_line=target_line,
|
||||
max_depth=3,
|
||||
expand_callers=True, # Only expand callers
|
||||
expand_callees=False, # Don't expand callees
|
||||
)
|
||||
```
|
||||
|
||||
### Pattern 2: Find Call Chain
|
||||
|
||||
```python
|
||||
tree = await builder.build_tree(
|
||||
seed_file_path=entry_point,
|
||||
seed_line=main_line,
|
||||
max_depth=10,
|
||||
expand_callers=False, # Don't expand callers
|
||||
expand_callees=True, # Only expand callees (call chain)
|
||||
)
|
||||
```
|
||||
|
||||
### Pattern 3: Full Relationship Map
|
||||
|
||||
```python
|
||||
tree = await builder.build_tree(
|
||||
seed_file_path=target_file,
|
||||
seed_line=target_line,
|
||||
max_depth=5,
|
||||
expand_callers=True, # Expand both directions
|
||||
expand_callees=True,
|
||||
)
|
||||
```
|
||||
|
||||
## Configuration Tips
|
||||
|
||||
### Max Depth Guidelines
|
||||
|
||||
- **Depth 1-2**: Direct callers/callees only (fast, focused)
|
||||
- **Depth 3-5**: Good balance of coverage and performance (recommended)
|
||||
- **Depth 6-10**: Deep exploration (slower, may hit cycles)
|
||||
|
||||
### Timeout Settings
|
||||
|
||||
```python
|
||||
builder = AssociationTreeBuilder(
|
||||
lsp,
|
||||
timeout=5.0, # 5 seconds per LSP request
|
||||
)
|
||||
|
||||
# For slower language servers
|
||||
builder = AssociationTreeBuilder(lsp, timeout=10.0)
|
||||
```
|
||||
|
||||
### Score Weight Tuning
|
||||
|
||||
```python
|
||||
# Emphasize proximity to seed
|
||||
deduplicator = ResultDeduplicator(
|
||||
depth_weight=0.7, # High weight for depth
|
||||
frequency_weight=0.2,
|
||||
kind_weight=0.1,
|
||||
)
|
||||
|
||||
# Emphasize frequently-called functions
|
||||
deduplicator = ResultDeduplicator(
|
||||
depth_weight=0.2,
|
||||
frequency_weight=0.7, # High weight for frequency
|
||||
kind_weight=0.1,
|
||||
)
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
```python
|
||||
try:
|
||||
tree = await builder.build_tree(...)
|
||||
|
||||
if not tree.all_nodes:
|
||||
print("No call hierarchy found - LSP may not support this file type")
|
||||
|
||||
except asyncio.TimeoutError:
|
||||
print("LSP request timed out - try increasing timeout")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error building tree: {e}")
|
||||
```
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### 1. Limit Depth
|
||||
|
||||
```python
|
||||
# Fast: max_depth=3
|
||||
tree = await builder.build_tree(..., max_depth=3)
|
||||
```
|
||||
|
||||
### 2. Filter Early
|
||||
|
||||
```python
|
||||
# Get all nodes
|
||||
unique_nodes = deduplicator.deduplicate(tree)
|
||||
|
||||
# Filter to relevant kinds immediately
|
||||
functions = deduplicator.filter_by_kind(unique_nodes, ["function", "method"])
|
||||
```
|
||||
|
||||
### 3. Use Timeouts
|
||||
|
||||
```python
|
||||
# Set aggressive timeouts for fast iteration
|
||||
builder = AssociationTreeBuilder(lsp, timeout=3.0)
|
||||
```
|
||||
|
||||
## Common Issues
|
||||
|
||||
### Issue: Empty Tree Returned
|
||||
|
||||
**Causes**:
|
||||
- File not supported by LSP server
|
||||
- No call hierarchy at that position
|
||||
- Position is not on a function/method
|
||||
|
||||
**Solutions**:
|
||||
- Verify LSP server supports the language
|
||||
- Check that position is on a function definition
|
||||
- Try different seed locations
|
||||
|
||||
### Issue: Timeout Errors
|
||||
|
||||
**Causes**:
|
||||
- LSP server slow or overloaded
|
||||
- Network/connection issues
|
||||
- Max depth too high
|
||||
|
||||
**Solutions**:
|
||||
- Increase timeout value
|
||||
- Reduce max_depth
|
||||
- Check LSP server health
|
||||
|
||||
### Issue: Cycle Detected
|
||||
|
||||
**Behavior**: Cycles are automatically detected and marked
|
||||
|
||||
**Example**:
|
||||
```python
|
||||
for node in tree.node_list:
|
||||
if node.is_cycle:
|
||||
print(f"Cycle detected at {node.item.name}")
|
||||
```
|
||||
|
||||
## Testing
|
||||
|
||||
Run the test suite:
|
||||
|
||||
```bash
|
||||
# All tests
|
||||
pytest tests/test_association_tree.py -v
|
||||
|
||||
# Specific test
|
||||
pytest tests/test_association_tree.py::test_simple_tree_building -v
|
||||
```
|
||||
|
||||
## Demo Script
|
||||
|
||||
Run the demo:
|
||||
|
||||
```bash
|
||||
python examples/association_tree_demo.py
|
||||
```
|
||||
|
||||
## Further Reading
|
||||
|
||||
- [Full Documentation](README.md)
|
||||
- [Implementation Summary](../../ASSOCIATION_TREE_IMPLEMENTATION.md)
|
||||
- [LSP Manager Documentation](../../lsp/standalone_manager.py)
|
||||
188
codex-lens/src/codexlens/search/association_tree/README.md
Normal file
188
codex-lens/src/codexlens/search/association_tree/README.md
Normal file
@@ -0,0 +1,188 @@
|
||||
# Association Tree Module
|
||||
|
||||
LSP-based code relationship discovery using call hierarchy.
|
||||
|
||||
## Overview
|
||||
|
||||
This module provides components for building and analyzing call relationship trees using Language Server Protocol (LSP) call hierarchy capabilities. It consists of three main components:
|
||||
|
||||
1. **Data Structures** (`data_structures.py`) - Core data classes
|
||||
2. **Association Tree Builder** (`builder.py`) - Tree construction via LSP
|
||||
3. **Result Deduplicator** (`deduplicator.py`) - Node extraction and scoring
|
||||
|
||||
## Components
|
||||
|
||||
### 1. Data Structures
|
||||
|
||||
**TreeNode**: Represents a single node in the call tree.
|
||||
- Contains LSP CallHierarchyItem
|
||||
- Tracks depth, parents, children
|
||||
- Detects and marks cycles
|
||||
|
||||
**CallTree**: Complete tree structure with roots and edges.
|
||||
- Stores all discovered nodes
|
||||
- Tracks edges (call relationships)
|
||||
- Provides lookup by node_id
|
||||
|
||||
**UniqueNode**: Deduplicated code symbol with metadata.
|
||||
- Aggregates multiple occurrences
|
||||
- Tracks minimum depth
|
||||
- Contains relevance score
|
||||
|
||||
### 2. AssociationTreeBuilder
|
||||
|
||||
Builds call trees using LSP call hierarchy:
|
||||
|
||||
**Strategy**:
|
||||
- Depth-first recursive expansion
|
||||
- Supports expanding callers (incoming calls) and callees (outgoing calls)
|
||||
- Detects and marks circular references
|
||||
- Respects max_depth limit
|
||||
|
||||
**Key Features**:
|
||||
- Async/await for concurrent LSP requests
|
||||
- Timeout handling (5s per node)
|
||||
- Graceful error handling
|
||||
- Cycle detection via visited set
|
||||
|
||||
### 3. ResultDeduplicator
|
||||
|
||||
Extracts unique nodes from trees and assigns scores:
|
||||
|
||||
**Scoring Factors**:
|
||||
- **Depth** (40%): Shallower = more relevant
|
||||
- **Frequency** (30%): More occurrences = more important
|
||||
- **Kind** (30%): function/method > class > variable
|
||||
|
||||
**Features**:
|
||||
- Merges duplicate nodes by (file_path, start_line, end_line)
|
||||
- Tracks all paths to each node
|
||||
- Supports filtering by kind or file pattern
|
||||
- Configurable score weights
|
||||
|
||||
## Usage Example
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
from codexlens.lsp.standalone_manager import StandaloneLspManager
|
||||
from codexlens.search.association_tree import (
|
||||
AssociationTreeBuilder,
|
||||
ResultDeduplicator,
|
||||
)
|
||||
|
||||
async def main():
|
||||
# Initialize LSP manager
|
||||
async with StandaloneLspManager(workspace_root="/path/to/project") as lsp:
|
||||
# Create tree builder
|
||||
builder = AssociationTreeBuilder(lsp, timeout=5.0)
|
||||
|
||||
# Build tree from seed location
|
||||
tree = await builder.build_tree(
|
||||
seed_file_path="src/main.py",
|
||||
seed_line=42,
|
||||
seed_character=1,
|
||||
max_depth=5,
|
||||
expand_callers=True, # Find who calls this
|
||||
expand_callees=True, # Find what this calls
|
||||
)
|
||||
|
||||
print(f"Tree: {tree}")
|
||||
print(f" Roots: {len(tree.roots)}")
|
||||
print(f" Total nodes: {len(tree.all_nodes)}")
|
||||
print(f" Edges: {len(tree.edges)}")
|
||||
|
||||
# Deduplicate and score
|
||||
deduplicator = ResultDeduplicator(
|
||||
depth_weight=0.4,
|
||||
frequency_weight=0.3,
|
||||
kind_weight=0.3,
|
||||
)
|
||||
|
||||
unique_nodes = deduplicator.deduplicate(tree, max_results=20)
|
||||
|
||||
print(f"\nTop unique nodes:")
|
||||
for node in unique_nodes[:10]:
|
||||
print(f" {node.name} ({node.file_path}:{node.range.start_line})")
|
||||
print(f" Depth: {node.min_depth}, Occurrences: {node.occurrences}, Score: {node.score:.2f}")
|
||||
|
||||
# Filter by kind
|
||||
functions_only = deduplicator.filter_by_kind(unique_nodes, ["function", "method"])
|
||||
print(f"\nFunctions/methods: {len(functions_only)}")
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
## Integration with Hybrid Search
|
||||
|
||||
The association tree can be integrated with the hybrid search engine:
|
||||
|
||||
```python
|
||||
from codexlens.search.hybrid_search import HybridSearchEngine
|
||||
|
||||
async def search_with_association_tree(query: str):
|
||||
# 1. Get seed results from vector search
|
||||
search_engine = HybridSearchEngine()
|
||||
seed_results = await search_engine.search(query, limit=5)
|
||||
|
||||
# 2. Build association trees from top results
|
||||
builder = AssociationTreeBuilder(lsp_manager)
|
||||
trees = []
|
||||
|
||||
for result in seed_results:
|
||||
tree = await builder.build_tree(
|
||||
seed_file_path=result.file_path,
|
||||
seed_line=result.line,
|
||||
max_depth=3,
|
||||
)
|
||||
trees.append(tree)
|
||||
|
||||
# 3. Merge and deduplicate
|
||||
merged_tree = merge_trees(trees) # Custom merge logic
|
||||
deduplicator = ResultDeduplicator()
|
||||
unique_nodes = deduplicator.deduplicate(merged_tree, max_results=50)
|
||||
|
||||
# 4. Convert to search results
|
||||
final_results = convert_to_search_results(unique_nodes)
|
||||
|
||||
return final_results
|
||||
```
|
||||
|
||||
## Testing
|
||||
|
||||
Run the test suite:
|
||||
|
||||
```bash
|
||||
pytest tests/test_association_tree.py -v
|
||||
```
|
||||
|
||||
Test coverage includes:
|
||||
- Simple tree building
|
||||
- Cycle detection
|
||||
- Max depth limits
|
||||
- Empty trees
|
||||
- Deduplication logic
|
||||
- Scoring algorithms
|
||||
- Filtering operations
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
1. **LSP Timeouts**: Set appropriate timeout values (default 5s)
|
||||
2. **Max Depth**: Limit depth to avoid exponential expansion (recommended: 3-5)
|
||||
3. **Caching**: LSP manager caches open documents
|
||||
4. **Parallel Expansion**: Incoming/outgoing calls fetched in parallel
|
||||
|
||||
## Error Handling
|
||||
|
||||
The builder gracefully handles:
|
||||
- LSP timeout errors (logs warning, continues)
|
||||
- Missing call hierarchy support (returns empty)
|
||||
- Network/connection failures (skips node)
|
||||
- Invalid LSP responses (logs error, skips)
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
- [ ] Multi-root tree building from multiple seeds
|
||||
- [ ] Custom scoring functions
|
||||
- [ ] Graph visualization export
|
||||
- [ ] Incremental tree updates
|
||||
- [ ] Cross-file relationship analysis
|
||||
21
codex-lens/src/codexlens/search/association_tree/__init__.py
Normal file
21
codex-lens/src/codexlens/search/association_tree/__init__.py
Normal file
@@ -0,0 +1,21 @@
|
||||
"""Association tree module for LSP-based code relationship discovery.
|
||||
|
||||
This module provides components for building and processing call association trees
|
||||
using Language Server Protocol (LSP) call hierarchy capabilities.
|
||||
"""
|
||||
|
||||
from .builder import AssociationTreeBuilder
|
||||
from .data_structures import (
|
||||
CallTree,
|
||||
TreeNode,
|
||||
UniqueNode,
|
||||
)
|
||||
from .deduplicator import ResultDeduplicator
|
||||
|
||||
__all__ = [
|
||||
"AssociationTreeBuilder",
|
||||
"CallTree",
|
||||
"TreeNode",
|
||||
"UniqueNode",
|
||||
"ResultDeduplicator",
|
||||
]
|
||||
439
codex-lens/src/codexlens/search/association_tree/builder.py
Normal file
439
codex-lens/src/codexlens/search/association_tree/builder.py
Normal file
@@ -0,0 +1,439 @@
|
||||
"""Association tree builder using LSP call hierarchy.
|
||||
|
||||
Builds call relationship trees by recursively expanding from seed locations
|
||||
using Language Server Protocol (LSP) call hierarchy capabilities.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Set
|
||||
|
||||
from codexlens.hybrid_search.data_structures import CallHierarchyItem, Range
|
||||
from codexlens.lsp.standalone_manager import StandaloneLspManager
|
||||
from .data_structures import CallTree, TreeNode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AssociationTreeBuilder:
|
||||
"""Builds association trees from seed locations using LSP call hierarchy.
|
||||
|
||||
Uses depth-first recursive expansion to build a tree of code relationships
|
||||
starting from seed locations (typically from vector search results).
|
||||
|
||||
Strategy:
|
||||
- Start from seed locations (vector search results)
|
||||
- For each seed, get call hierarchy items via LSP
|
||||
- Recursively expand incoming calls (callers) if expand_callers=True
|
||||
- Recursively expand outgoing calls (callees) if expand_callees=True
|
||||
- Track visited nodes to prevent cycles
|
||||
- Stop at max_depth or when no more relations found
|
||||
|
||||
Attributes:
|
||||
lsp_manager: StandaloneLspManager for LSP communication
|
||||
visited: Set of visited node IDs to prevent cycles
|
||||
timeout: Timeout for individual LSP requests (seconds)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lsp_manager: StandaloneLspManager,
|
||||
timeout: float = 5.0,
|
||||
):
|
||||
"""Initialize AssociationTreeBuilder.
|
||||
|
||||
Args:
|
||||
lsp_manager: StandaloneLspManager instance for LSP communication
|
||||
timeout: Timeout for individual LSP requests in seconds
|
||||
"""
|
||||
self.lsp_manager = lsp_manager
|
||||
self.timeout = timeout
|
||||
self.visited: Set[str] = set()
|
||||
|
||||
async def build_tree(
|
||||
self,
|
||||
seed_file_path: str,
|
||||
seed_line: int,
|
||||
seed_character: int = 1,
|
||||
max_depth: int = 5,
|
||||
expand_callers: bool = True,
|
||||
expand_callees: bool = True,
|
||||
) -> CallTree:
|
||||
"""Build call tree from a single seed location.
|
||||
|
||||
Args:
|
||||
seed_file_path: Path to the seed file
|
||||
seed_line: Line number of the seed symbol (1-based)
|
||||
seed_character: Character position (1-based, default 1)
|
||||
max_depth: Maximum recursion depth (default 5)
|
||||
expand_callers: Whether to expand incoming calls (callers)
|
||||
expand_callees: Whether to expand outgoing calls (callees)
|
||||
|
||||
Returns:
|
||||
CallTree containing all discovered nodes and relationships
|
||||
"""
|
||||
tree = CallTree()
|
||||
self.visited.clear()
|
||||
|
||||
# Get call hierarchy items for the seed position
|
||||
try:
|
||||
hierarchy_items = await asyncio.wait_for(
|
||||
self.lsp_manager.get_call_hierarchy_items(
|
||||
file_path=seed_file_path,
|
||||
line=seed_line,
|
||||
character=seed_character,
|
||||
),
|
||||
timeout=self.timeout,
|
||||
)
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(
|
||||
"Timeout getting call hierarchy items for %s:%d",
|
||||
seed_file_path,
|
||||
seed_line,
|
||||
)
|
||||
return tree
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
"Error getting call hierarchy items for %s:%d: %s",
|
||||
seed_file_path,
|
||||
seed_line,
|
||||
e,
|
||||
)
|
||||
return tree
|
||||
|
||||
if not hierarchy_items:
|
||||
logger.debug(
|
||||
"No call hierarchy items found for %s:%d",
|
||||
seed_file_path,
|
||||
seed_line,
|
||||
)
|
||||
return tree
|
||||
|
||||
# Create root nodes from hierarchy items
|
||||
for item_dict in hierarchy_items:
|
||||
# Convert LSP dict to CallHierarchyItem
|
||||
item = self._dict_to_call_hierarchy_item(item_dict)
|
||||
if not item:
|
||||
continue
|
||||
|
||||
root_node = TreeNode(
|
||||
item=item,
|
||||
depth=0,
|
||||
path_from_root=[self._create_node_id(item)],
|
||||
)
|
||||
tree.roots.append(root_node)
|
||||
tree.add_node(root_node)
|
||||
|
||||
# Mark as visited
|
||||
self.visited.add(root_node.node_id)
|
||||
|
||||
# Recursively expand the tree
|
||||
await self._expand_node(
|
||||
node=root_node,
|
||||
node_dict=item_dict,
|
||||
tree=tree,
|
||||
current_depth=0,
|
||||
max_depth=max_depth,
|
||||
expand_callers=expand_callers,
|
||||
expand_callees=expand_callees,
|
||||
)
|
||||
|
||||
tree.depth_reached = max_depth
|
||||
return tree
|
||||
|
||||
async def _expand_node(
|
||||
self,
|
||||
node: TreeNode,
|
||||
node_dict: Dict,
|
||||
tree: CallTree,
|
||||
current_depth: int,
|
||||
max_depth: int,
|
||||
expand_callers: bool,
|
||||
expand_callees: bool,
|
||||
) -> None:
|
||||
"""Recursively expand a node by fetching its callers and callees.
|
||||
|
||||
Args:
|
||||
node: TreeNode to expand
|
||||
node_dict: LSP CallHierarchyItem dict (for LSP requests)
|
||||
tree: CallTree to add discovered nodes to
|
||||
current_depth: Current recursion depth
|
||||
max_depth: Maximum allowed depth
|
||||
expand_callers: Whether to expand incoming calls
|
||||
expand_callees: Whether to expand outgoing calls
|
||||
"""
|
||||
# Stop if max depth reached
|
||||
if current_depth >= max_depth:
|
||||
return
|
||||
|
||||
# Prepare tasks for parallel expansion
|
||||
tasks = []
|
||||
|
||||
if expand_callers:
|
||||
tasks.append(
|
||||
self._expand_incoming_calls(
|
||||
node=node,
|
||||
node_dict=node_dict,
|
||||
tree=tree,
|
||||
current_depth=current_depth,
|
||||
max_depth=max_depth,
|
||||
expand_callers=expand_callers,
|
||||
expand_callees=expand_callees,
|
||||
)
|
||||
)
|
||||
|
||||
if expand_callees:
|
||||
tasks.append(
|
||||
self._expand_outgoing_calls(
|
||||
node=node,
|
||||
node_dict=node_dict,
|
||||
tree=tree,
|
||||
current_depth=current_depth,
|
||||
max_depth=max_depth,
|
||||
expand_callers=expand_callers,
|
||||
expand_callees=expand_callees,
|
||||
)
|
||||
)
|
||||
|
||||
# Execute expansions in parallel
|
||||
if tasks:
|
||||
await asyncio.gather(*tasks, return_exceptions=True)
|
||||
|
||||
async def _expand_incoming_calls(
|
||||
self,
|
||||
node: TreeNode,
|
||||
node_dict: Dict,
|
||||
tree: CallTree,
|
||||
current_depth: int,
|
||||
max_depth: int,
|
||||
expand_callers: bool,
|
||||
expand_callees: bool,
|
||||
) -> None:
|
||||
"""Expand incoming calls (callers) for a node.
|
||||
|
||||
Args:
|
||||
node: TreeNode being expanded
|
||||
node_dict: LSP dict for the node
|
||||
tree: CallTree to add nodes to
|
||||
current_depth: Current depth
|
||||
max_depth: Maximum depth
|
||||
expand_callers: Whether to continue expanding callers
|
||||
expand_callees: Whether to expand callees
|
||||
"""
|
||||
try:
|
||||
incoming_calls = await asyncio.wait_for(
|
||||
self.lsp_manager.get_incoming_calls(item=node_dict),
|
||||
timeout=self.timeout,
|
||||
)
|
||||
except asyncio.TimeoutError:
|
||||
logger.debug("Timeout getting incoming calls for %s", node.node_id)
|
||||
return
|
||||
except Exception as e:
|
||||
logger.debug("Error getting incoming calls for %s: %s", node.node_id, e)
|
||||
return
|
||||
|
||||
if not incoming_calls:
|
||||
return
|
||||
|
||||
# Process each incoming call
|
||||
for call_dict in incoming_calls:
|
||||
caller_dict = call_dict.get("from")
|
||||
if not caller_dict:
|
||||
continue
|
||||
|
||||
# Convert to CallHierarchyItem
|
||||
caller_item = self._dict_to_call_hierarchy_item(caller_dict)
|
||||
if not caller_item:
|
||||
continue
|
||||
|
||||
caller_id = self._create_node_id(caller_item)
|
||||
|
||||
# Check for cycles
|
||||
if caller_id in self.visited:
|
||||
# Create cycle marker node
|
||||
cycle_node = TreeNode(
|
||||
item=caller_item,
|
||||
depth=current_depth + 1,
|
||||
is_cycle=True,
|
||||
path_from_root=node.path_from_root + [caller_id],
|
||||
)
|
||||
node.parents.append(cycle_node)
|
||||
continue
|
||||
|
||||
# Create new caller node
|
||||
caller_node = TreeNode(
|
||||
item=caller_item,
|
||||
depth=current_depth + 1,
|
||||
path_from_root=node.path_from_root + [caller_id],
|
||||
)
|
||||
|
||||
# Add to tree
|
||||
tree.add_node(caller_node)
|
||||
tree.add_edge(caller_node, node)
|
||||
|
||||
# Update relationships
|
||||
node.parents.append(caller_node)
|
||||
caller_node.children.append(node)
|
||||
|
||||
# Mark as visited
|
||||
self.visited.add(caller_id)
|
||||
|
||||
# Recursively expand the caller
|
||||
await self._expand_node(
|
||||
node=caller_node,
|
||||
node_dict=caller_dict,
|
||||
tree=tree,
|
||||
current_depth=current_depth + 1,
|
||||
max_depth=max_depth,
|
||||
expand_callers=expand_callers,
|
||||
expand_callees=expand_callees,
|
||||
)
|
||||
|
||||
async def _expand_outgoing_calls(
|
||||
self,
|
||||
node: TreeNode,
|
||||
node_dict: Dict,
|
||||
tree: CallTree,
|
||||
current_depth: int,
|
||||
max_depth: int,
|
||||
expand_callers: bool,
|
||||
expand_callees: bool,
|
||||
) -> None:
|
||||
"""Expand outgoing calls (callees) for a node.
|
||||
|
||||
Args:
|
||||
node: TreeNode being expanded
|
||||
node_dict: LSP dict for the node
|
||||
tree: CallTree to add nodes to
|
||||
current_depth: Current depth
|
||||
max_depth: Maximum depth
|
||||
expand_callers: Whether to expand callers
|
||||
expand_callees: Whether to continue expanding callees
|
||||
"""
|
||||
try:
|
||||
outgoing_calls = await asyncio.wait_for(
|
||||
self.lsp_manager.get_outgoing_calls(item=node_dict),
|
||||
timeout=self.timeout,
|
||||
)
|
||||
except asyncio.TimeoutError:
|
||||
logger.debug("Timeout getting outgoing calls for %s", node.node_id)
|
||||
return
|
||||
except Exception as e:
|
||||
logger.debug("Error getting outgoing calls for %s: %s", node.node_id, e)
|
||||
return
|
||||
|
||||
if not outgoing_calls:
|
||||
return
|
||||
|
||||
# Process each outgoing call
|
||||
for call_dict in outgoing_calls:
|
||||
callee_dict = call_dict.get("to")
|
||||
if not callee_dict:
|
||||
continue
|
||||
|
||||
# Convert to CallHierarchyItem
|
||||
callee_item = self._dict_to_call_hierarchy_item(callee_dict)
|
||||
if not callee_item:
|
||||
continue
|
||||
|
||||
callee_id = self._create_node_id(callee_item)
|
||||
|
||||
# Check for cycles
|
||||
if callee_id in self.visited:
|
||||
# Create cycle marker node
|
||||
cycle_node = TreeNode(
|
||||
item=callee_item,
|
||||
depth=current_depth + 1,
|
||||
is_cycle=True,
|
||||
path_from_root=node.path_from_root + [callee_id],
|
||||
)
|
||||
node.children.append(cycle_node)
|
||||
continue
|
||||
|
||||
# Create new callee node
|
||||
callee_node = TreeNode(
|
||||
item=callee_item,
|
||||
depth=current_depth + 1,
|
||||
path_from_root=node.path_from_root + [callee_id],
|
||||
)
|
||||
|
||||
# Add to tree
|
||||
tree.add_node(callee_node)
|
||||
tree.add_edge(node, callee_node)
|
||||
|
||||
# Update relationships
|
||||
node.children.append(callee_node)
|
||||
callee_node.parents.append(node)
|
||||
|
||||
# Mark as visited
|
||||
self.visited.add(callee_id)
|
||||
|
||||
# Recursively expand the callee
|
||||
await self._expand_node(
|
||||
node=callee_node,
|
||||
node_dict=callee_dict,
|
||||
tree=tree,
|
||||
current_depth=current_depth + 1,
|
||||
max_depth=max_depth,
|
||||
expand_callers=expand_callers,
|
||||
expand_callees=expand_callees,
|
||||
)
|
||||
|
||||
def _dict_to_call_hierarchy_item(
|
||||
self, item_dict: Dict
|
||||
) -> Optional[CallHierarchyItem]:
|
||||
"""Convert LSP dict to CallHierarchyItem.
|
||||
|
||||
Args:
|
||||
item_dict: LSP CallHierarchyItem dictionary
|
||||
|
||||
Returns:
|
||||
CallHierarchyItem or None if conversion fails
|
||||
"""
|
||||
try:
|
||||
# Extract URI and convert to file path
|
||||
uri = item_dict.get("uri", "")
|
||||
file_path = uri.replace("file:///", "").replace("file://", "")
|
||||
|
||||
# Handle Windows paths (file:///C:/...)
|
||||
if len(file_path) > 2 and file_path[0] == "/" and file_path[2] == ":":
|
||||
file_path = file_path[1:]
|
||||
|
||||
# Extract range
|
||||
range_dict = item_dict.get("range", {})
|
||||
start = range_dict.get("start", {})
|
||||
end = range_dict.get("end", {})
|
||||
|
||||
# Create Range (convert from 0-based to 1-based)
|
||||
item_range = Range(
|
||||
start_line=start.get("line", 0) + 1,
|
||||
start_character=start.get("character", 0) + 1,
|
||||
end_line=end.get("line", 0) + 1,
|
||||
end_character=end.get("character", 0) + 1,
|
||||
)
|
||||
|
||||
return CallHierarchyItem(
|
||||
name=item_dict.get("name", "unknown"),
|
||||
kind=str(item_dict.get("kind", "unknown")),
|
||||
file_path=file_path,
|
||||
range=item_range,
|
||||
detail=item_dict.get("detail"),
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.debug("Failed to convert dict to CallHierarchyItem: %s", e)
|
||||
return None
|
||||
|
||||
def _create_node_id(self, item: CallHierarchyItem) -> str:
|
||||
"""Create unique node ID from CallHierarchyItem.
|
||||
|
||||
Args:
|
||||
item: CallHierarchyItem
|
||||
|
||||
Returns:
|
||||
Unique node ID string
|
||||
"""
|
||||
return f"{item.file_path}:{item.name}:{item.range.start_line}"
|
||||
@@ -0,0 +1,191 @@
|
||||
"""Data structures for association tree building.
|
||||
|
||||
Defines the core data classes for representing call hierarchy trees and
|
||||
deduplicated results.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from codexlens.hybrid_search.data_structures import CallHierarchyItem, Range
|
||||
|
||||
|
||||
@dataclass
|
||||
class TreeNode:
|
||||
"""Node in the call association tree.
|
||||
|
||||
Represents a single function/method in the tree, including its position
|
||||
in the hierarchy and relationships.
|
||||
|
||||
Attributes:
|
||||
item: LSP CallHierarchyItem containing symbol information
|
||||
depth: Distance from the root node (seed) - 0 for roots
|
||||
children: List of child nodes (functions called by this node)
|
||||
parents: List of parent nodes (functions that call this node)
|
||||
is_cycle: Whether this node creates a circular reference
|
||||
path_from_root: Path (list of node IDs) from root to this node
|
||||
"""
|
||||
|
||||
item: CallHierarchyItem
|
||||
depth: int = 0
|
||||
children: List[TreeNode] = field(default_factory=list)
|
||||
parents: List[TreeNode] = field(default_factory=list)
|
||||
is_cycle: bool = False
|
||||
path_from_root: List[str] = field(default_factory=list)
|
||||
|
||||
@property
|
||||
def node_id(self) -> str:
|
||||
"""Unique identifier for this node."""
|
||||
return f"{self.item.file_path}:{self.item.name}:{self.item.range.start_line}"
|
||||
|
||||
def __hash__(self) -> int:
|
||||
"""Hash based on node ID."""
|
||||
return hash(self.node_id)
|
||||
|
||||
def __eq__(self, other: object) -> bool:
|
||||
"""Equality based on node ID."""
|
||||
if not isinstance(other, TreeNode):
|
||||
return False
|
||||
return self.node_id == other.node_id
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the node."""
|
||||
cycle_marker = " [CYCLE]" if self.is_cycle else ""
|
||||
return f"TreeNode({self.item.name}@{self.item.file_path}:{self.item.range.start_line}){cycle_marker}"
|
||||
|
||||
|
||||
@dataclass
|
||||
class CallTree:
|
||||
"""Complete call tree structure built from seeds.
|
||||
|
||||
Contains all nodes discovered through recursive expansion and
|
||||
the relationships between them.
|
||||
|
||||
Attributes:
|
||||
roots: List of root nodes (seed symbols)
|
||||
all_nodes: Dictionary mapping node_id -> TreeNode for quick lookup
|
||||
node_list: Flat list of all nodes in tree order
|
||||
edges: List of (from_node_id, to_node_id) tuples representing calls
|
||||
depth_reached: Maximum depth achieved in expansion
|
||||
"""
|
||||
|
||||
roots: List[TreeNode] = field(default_factory=list)
|
||||
all_nodes: Dict[str, TreeNode] = field(default_factory=dict)
|
||||
node_list: List[TreeNode] = field(default_factory=list)
|
||||
edges: List[tuple[str, str]] = field(default_factory=list)
|
||||
depth_reached: int = 0
|
||||
|
||||
def add_node(self, node: TreeNode) -> None:
|
||||
"""Add a node to the tree.
|
||||
|
||||
Args:
|
||||
node: TreeNode to add
|
||||
"""
|
||||
if node.node_id not in self.all_nodes:
|
||||
self.all_nodes[node.node_id] = node
|
||||
self.node_list.append(node)
|
||||
|
||||
def add_edge(self, from_node: TreeNode, to_node: TreeNode) -> None:
|
||||
"""Add an edge between two nodes.
|
||||
|
||||
Args:
|
||||
from_node: Source node
|
||||
to_node: Target node
|
||||
"""
|
||||
edge = (from_node.node_id, to_node.node_id)
|
||||
if edge not in self.edges:
|
||||
self.edges.append(edge)
|
||||
|
||||
def get_node(self, node_id: str) -> Optional[TreeNode]:
|
||||
"""Get a node by ID.
|
||||
|
||||
Args:
|
||||
node_id: Node identifier
|
||||
|
||||
Returns:
|
||||
TreeNode if found, None otherwise
|
||||
"""
|
||||
return self.all_nodes.get(node_id)
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Return total number of nodes in tree."""
|
||||
return len(self.all_nodes)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the tree."""
|
||||
return (
|
||||
f"CallTree(roots={len(self.roots)}, nodes={len(self.all_nodes)}, "
|
||||
f"depth={self.depth_reached})"
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class UniqueNode:
|
||||
"""Deduplicated unique code symbol from the tree.
|
||||
|
||||
Represents a single unique code location that may appear multiple times
|
||||
in the tree under different contexts. Contains aggregated information
|
||||
about all occurrences.
|
||||
|
||||
Attributes:
|
||||
file_path: Absolute path to the file
|
||||
name: Symbol name (function, method, class, etc.)
|
||||
kind: Symbol kind (function, method, class, etc.)
|
||||
range: Code range in the file
|
||||
min_depth: Minimum depth at which this node appears in the tree
|
||||
occurrences: Number of times this node appears in the tree
|
||||
paths: List of paths from roots to this node
|
||||
context_nodes: Related nodes from the tree
|
||||
score: Composite relevance score (higher is better)
|
||||
"""
|
||||
|
||||
file_path: str
|
||||
name: str
|
||||
kind: str
|
||||
range: Range
|
||||
min_depth: int = 0
|
||||
occurrences: int = 1
|
||||
paths: List[List[str]] = field(default_factory=list)
|
||||
context_nodes: List[str] = field(default_factory=list)
|
||||
score: float = 0.0
|
||||
|
||||
@property
|
||||
def node_key(self) -> tuple[str, int, int]:
|
||||
"""Unique key for deduplication.
|
||||
|
||||
Uses (file_path, start_line, end_line) as the unique identifier
|
||||
for this symbol across all occurrences.
|
||||
"""
|
||||
return (
|
||||
self.file_path,
|
||||
self.range.start_line,
|
||||
self.range.end_line,
|
||||
)
|
||||
|
||||
def add_path(self, path: List[str]) -> None:
|
||||
"""Add a path from root to this node.
|
||||
|
||||
Args:
|
||||
path: List of node IDs from root to this node
|
||||
"""
|
||||
if path not in self.paths:
|
||||
self.paths.append(path)
|
||||
|
||||
def __hash__(self) -> int:
|
||||
"""Hash based on node key."""
|
||||
return hash(self.node_key)
|
||||
|
||||
def __eq__(self, other: object) -> bool:
|
||||
"""Equality based on node key."""
|
||||
if not isinstance(other, UniqueNode):
|
||||
return False
|
||||
return self.node_key == other.node_key
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""String representation of the unique node."""
|
||||
return (
|
||||
f"UniqueNode({self.name}@{self.file_path}:{self.range.start_line}, "
|
||||
f"depth={self.min_depth}, occ={self.occurrences}, score={self.score:.2f})"
|
||||
)
|
||||
301
codex-lens/src/codexlens/search/association_tree/deduplicator.py
Normal file
301
codex-lens/src/codexlens/search/association_tree/deduplicator.py
Normal file
@@ -0,0 +1,301 @@
|
||||
"""Result deduplication for association tree nodes.
|
||||
|
||||
Provides functionality to extract unique nodes from a call tree and assign
|
||||
relevance scores based on various factors.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from .data_structures import (
|
||||
CallTree,
|
||||
TreeNode,
|
||||
UniqueNode,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# Symbol kind weights for scoring (higher = more relevant)
|
||||
KIND_WEIGHTS: Dict[str, float] = {
|
||||
# Functions and methods are primary targets
|
||||
"function": 1.0,
|
||||
"method": 1.0,
|
||||
"12": 1.0, # LSP SymbolKind.Function
|
||||
"6": 1.0, # LSP SymbolKind.Method
|
||||
# Classes are important but secondary
|
||||
"class": 0.8,
|
||||
"5": 0.8, # LSP SymbolKind.Class
|
||||
# Interfaces and types
|
||||
"interface": 0.7,
|
||||
"11": 0.7, # LSP SymbolKind.Interface
|
||||
"type": 0.6,
|
||||
# Constructors
|
||||
"constructor": 0.9,
|
||||
"9": 0.9, # LSP SymbolKind.Constructor
|
||||
# Variables and constants
|
||||
"variable": 0.4,
|
||||
"13": 0.4, # LSP SymbolKind.Variable
|
||||
"constant": 0.5,
|
||||
"14": 0.5, # LSP SymbolKind.Constant
|
||||
# Default for unknown kinds
|
||||
"unknown": 0.3,
|
||||
}
|
||||
|
||||
|
||||
class ResultDeduplicator:
|
||||
"""Extracts and scores unique nodes from call trees.
|
||||
|
||||
Processes a CallTree to extract unique code locations, merging duplicates
|
||||
and assigning relevance scores based on:
|
||||
- Depth: Shallower nodes (closer to seeds) score higher
|
||||
- Frequency: Nodes appearing multiple times score higher
|
||||
- Kind: Function/method > class > variable
|
||||
|
||||
Attributes:
|
||||
depth_weight: Weight for depth factor in scoring (default 0.4)
|
||||
frequency_weight: Weight for frequency factor (default 0.3)
|
||||
kind_weight: Weight for symbol kind factor (default 0.3)
|
||||
max_depth_penalty: Maximum depth before full penalty applied
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
depth_weight: float = 0.4,
|
||||
frequency_weight: float = 0.3,
|
||||
kind_weight: float = 0.3,
|
||||
max_depth_penalty: int = 10,
|
||||
):
|
||||
"""Initialize ResultDeduplicator.
|
||||
|
||||
Args:
|
||||
depth_weight: Weight for depth factor (0.0-1.0)
|
||||
frequency_weight: Weight for frequency factor (0.0-1.0)
|
||||
kind_weight: Weight for symbol kind factor (0.0-1.0)
|
||||
max_depth_penalty: Depth at which score becomes 0 for depth factor
|
||||
"""
|
||||
self.depth_weight = depth_weight
|
||||
self.frequency_weight = frequency_weight
|
||||
self.kind_weight = kind_weight
|
||||
self.max_depth_penalty = max_depth_penalty
|
||||
|
||||
def deduplicate(
|
||||
self,
|
||||
tree: CallTree,
|
||||
max_results: Optional[int] = None,
|
||||
) -> List[UniqueNode]:
|
||||
"""Extract unique nodes from the call tree.
|
||||
|
||||
Traverses the tree, groups nodes by their unique key (file_path,
|
||||
start_line, end_line), and merges duplicate occurrences.
|
||||
|
||||
Args:
|
||||
tree: CallTree to process
|
||||
max_results: Maximum number of results to return (None = all)
|
||||
|
||||
Returns:
|
||||
List of UniqueNode objects, sorted by score descending
|
||||
"""
|
||||
if not tree.node_list:
|
||||
return []
|
||||
|
||||
# Group nodes by unique key
|
||||
unique_map: Dict[tuple, UniqueNode] = {}
|
||||
|
||||
for node in tree.node_list:
|
||||
if node.is_cycle:
|
||||
# Skip cycle markers - they point to already-counted nodes
|
||||
continue
|
||||
|
||||
key = self._get_node_key(node)
|
||||
|
||||
if key in unique_map:
|
||||
# Update existing unique node
|
||||
unique_node = unique_map[key]
|
||||
unique_node.occurrences += 1
|
||||
unique_node.min_depth = min(unique_node.min_depth, node.depth)
|
||||
unique_node.add_path(node.path_from_root)
|
||||
|
||||
# Collect context from relationships
|
||||
for parent in node.parents:
|
||||
if not parent.is_cycle:
|
||||
unique_node.context_nodes.append(parent.node_id)
|
||||
for child in node.children:
|
||||
if not child.is_cycle:
|
||||
unique_node.context_nodes.append(child.node_id)
|
||||
else:
|
||||
# Create new unique node
|
||||
unique_node = UniqueNode(
|
||||
file_path=node.item.file_path,
|
||||
name=node.item.name,
|
||||
kind=node.item.kind,
|
||||
range=node.item.range,
|
||||
min_depth=node.depth,
|
||||
occurrences=1,
|
||||
paths=[node.path_from_root.copy()],
|
||||
context_nodes=[],
|
||||
score=0.0,
|
||||
)
|
||||
|
||||
# Collect initial context
|
||||
for parent in node.parents:
|
||||
if not parent.is_cycle:
|
||||
unique_node.context_nodes.append(parent.node_id)
|
||||
for child in node.children:
|
||||
if not child.is_cycle:
|
||||
unique_node.context_nodes.append(child.node_id)
|
||||
|
||||
unique_map[key] = unique_node
|
||||
|
||||
# Calculate scores for all unique nodes
|
||||
unique_nodes = list(unique_map.values())
|
||||
|
||||
# Find max frequency for normalization
|
||||
max_frequency = max((n.occurrences for n in unique_nodes), default=1)
|
||||
|
||||
for node in unique_nodes:
|
||||
node.score = self._score_node(node, max_frequency)
|
||||
|
||||
# Sort by score descending
|
||||
unique_nodes.sort(key=lambda n: n.score, reverse=True)
|
||||
|
||||
# Apply max_results limit
|
||||
if max_results is not None and max_results > 0:
|
||||
unique_nodes = unique_nodes[:max_results]
|
||||
|
||||
logger.debug(
|
||||
"Deduplicated %d tree nodes to %d unique nodes",
|
||||
len(tree.node_list),
|
||||
len(unique_nodes),
|
||||
)
|
||||
|
||||
return unique_nodes
|
||||
|
||||
def _score_node(
|
||||
self,
|
||||
node: UniqueNode,
|
||||
max_frequency: int,
|
||||
) -> float:
|
||||
"""Calculate composite score for a unique node.
|
||||
|
||||
Score = depth_weight * depth_score +
|
||||
frequency_weight * frequency_score +
|
||||
kind_weight * kind_score
|
||||
|
||||
Args:
|
||||
node: UniqueNode to score
|
||||
max_frequency: Maximum occurrence count for normalization
|
||||
|
||||
Returns:
|
||||
Composite score between 0.0 and 1.0
|
||||
"""
|
||||
# Depth score: closer to root = higher score
|
||||
# Score of 1.0 at depth 0, decreasing to 0.0 at max_depth_penalty
|
||||
depth_score = max(
|
||||
0.0,
|
||||
1.0 - (node.min_depth / self.max_depth_penalty),
|
||||
)
|
||||
|
||||
# Frequency score: more occurrences = higher score
|
||||
frequency_score = node.occurrences / max_frequency if max_frequency > 0 else 0.0
|
||||
|
||||
# Kind score: function/method > class > variable
|
||||
kind_str = str(node.kind).lower()
|
||||
kind_score = KIND_WEIGHTS.get(kind_str, KIND_WEIGHTS["unknown"])
|
||||
|
||||
# Composite score
|
||||
score = (
|
||||
self.depth_weight * depth_score
|
||||
+ self.frequency_weight * frequency_score
|
||||
+ self.kind_weight * kind_score
|
||||
)
|
||||
|
||||
return score
|
||||
|
||||
def _get_node_key(self, node: TreeNode) -> tuple:
|
||||
"""Get unique key for a tree node.
|
||||
|
||||
Uses (file_path, start_line, end_line) as the unique identifier.
|
||||
|
||||
Args:
|
||||
node: TreeNode
|
||||
|
||||
Returns:
|
||||
Tuple key for deduplication
|
||||
"""
|
||||
return (
|
||||
node.item.file_path,
|
||||
node.item.range.start_line,
|
||||
node.item.range.end_line,
|
||||
)
|
||||
|
||||
def filter_by_kind(
|
||||
self,
|
||||
nodes: List[UniqueNode],
|
||||
kinds: List[str],
|
||||
) -> List[UniqueNode]:
|
||||
"""Filter unique nodes by symbol kind.
|
||||
|
||||
Args:
|
||||
nodes: List of UniqueNode to filter
|
||||
kinds: List of allowed kinds (e.g., ["function", "method"])
|
||||
|
||||
Returns:
|
||||
Filtered list of UniqueNode
|
||||
"""
|
||||
kinds_lower = [k.lower() for k in kinds]
|
||||
return [
|
||||
node
|
||||
for node in nodes
|
||||
if str(node.kind).lower() in kinds_lower
|
||||
]
|
||||
|
||||
def filter_by_file(
|
||||
self,
|
||||
nodes: List[UniqueNode],
|
||||
file_patterns: List[str],
|
||||
) -> List[UniqueNode]:
|
||||
"""Filter unique nodes by file path patterns.
|
||||
|
||||
Args:
|
||||
nodes: List of UniqueNode to filter
|
||||
file_patterns: List of path substrings to match
|
||||
|
||||
Returns:
|
||||
Filtered list of UniqueNode
|
||||
"""
|
||||
return [
|
||||
node
|
||||
for node in nodes
|
||||
if any(pattern in node.file_path for pattern in file_patterns)
|
||||
]
|
||||
|
||||
def to_dict_list(self, nodes: List[UniqueNode]) -> List[Dict]:
|
||||
"""Convert list of UniqueNode to JSON-serializable dicts.
|
||||
|
||||
Args:
|
||||
nodes: List of UniqueNode
|
||||
|
||||
Returns:
|
||||
List of dictionaries
|
||||
"""
|
||||
return [
|
||||
{
|
||||
"file_path": node.file_path,
|
||||
"name": node.name,
|
||||
"kind": node.kind,
|
||||
"range": {
|
||||
"start_line": node.range.start_line,
|
||||
"start_character": node.range.start_character,
|
||||
"end_line": node.range.end_line,
|
||||
"end_character": node.range.end_character,
|
||||
},
|
||||
"min_depth": node.min_depth,
|
||||
"occurrences": node.occurrences,
|
||||
"path_count": len(node.paths),
|
||||
"score": round(node.score, 4),
|
||||
}
|
||||
for node in nodes
|
||||
]
|
||||
Reference in New Issue
Block a user