mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-13 02:41:50 +08:00
feat: Implement association tree for LSP-based code relationship discovery
- Add `association_tree` module with components for building and processing call association trees using LSP call hierarchy capabilities. - Introduce `AssociationTreeBuilder` for constructing call trees from seed locations with depth-first expansion. - Create data structures: `TreeNode`, `CallTree`, and `UniqueNode` for representing nodes and relationships in the call tree. - Implement `ResultDeduplicator` to extract unique nodes from call trees and assign relevance scores based on depth, frequency, and kind. - Add unit tests for `AssociationTreeBuilder` and `ResultDeduplicator` to ensure functionality and correctness.
This commit is contained in:
301
codex-lens/src/codexlens/search/association_tree/deduplicator.py
Normal file
301
codex-lens/src/codexlens/search/association_tree/deduplicator.py
Normal file
@@ -0,0 +1,301 @@
|
||||
"""Result deduplication for association tree nodes.
|
||||
|
||||
Provides functionality to extract unique nodes from a call tree and assign
|
||||
relevance scores based on various factors.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from .data_structures import (
|
||||
CallTree,
|
||||
TreeNode,
|
||||
UniqueNode,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# Symbol kind weights for scoring (higher = more relevant)
|
||||
KIND_WEIGHTS: Dict[str, float] = {
|
||||
# Functions and methods are primary targets
|
||||
"function": 1.0,
|
||||
"method": 1.0,
|
||||
"12": 1.0, # LSP SymbolKind.Function
|
||||
"6": 1.0, # LSP SymbolKind.Method
|
||||
# Classes are important but secondary
|
||||
"class": 0.8,
|
||||
"5": 0.8, # LSP SymbolKind.Class
|
||||
# Interfaces and types
|
||||
"interface": 0.7,
|
||||
"11": 0.7, # LSP SymbolKind.Interface
|
||||
"type": 0.6,
|
||||
# Constructors
|
||||
"constructor": 0.9,
|
||||
"9": 0.9, # LSP SymbolKind.Constructor
|
||||
# Variables and constants
|
||||
"variable": 0.4,
|
||||
"13": 0.4, # LSP SymbolKind.Variable
|
||||
"constant": 0.5,
|
||||
"14": 0.5, # LSP SymbolKind.Constant
|
||||
# Default for unknown kinds
|
||||
"unknown": 0.3,
|
||||
}
|
||||
|
||||
|
||||
class ResultDeduplicator:
|
||||
"""Extracts and scores unique nodes from call trees.
|
||||
|
||||
Processes a CallTree to extract unique code locations, merging duplicates
|
||||
and assigning relevance scores based on:
|
||||
- Depth: Shallower nodes (closer to seeds) score higher
|
||||
- Frequency: Nodes appearing multiple times score higher
|
||||
- Kind: Function/method > class > variable
|
||||
|
||||
Attributes:
|
||||
depth_weight: Weight for depth factor in scoring (default 0.4)
|
||||
frequency_weight: Weight for frequency factor (default 0.3)
|
||||
kind_weight: Weight for symbol kind factor (default 0.3)
|
||||
max_depth_penalty: Maximum depth before full penalty applied
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
depth_weight: float = 0.4,
|
||||
frequency_weight: float = 0.3,
|
||||
kind_weight: float = 0.3,
|
||||
max_depth_penalty: int = 10,
|
||||
):
|
||||
"""Initialize ResultDeduplicator.
|
||||
|
||||
Args:
|
||||
depth_weight: Weight for depth factor (0.0-1.0)
|
||||
frequency_weight: Weight for frequency factor (0.0-1.0)
|
||||
kind_weight: Weight for symbol kind factor (0.0-1.0)
|
||||
max_depth_penalty: Depth at which score becomes 0 for depth factor
|
||||
"""
|
||||
self.depth_weight = depth_weight
|
||||
self.frequency_weight = frequency_weight
|
||||
self.kind_weight = kind_weight
|
||||
self.max_depth_penalty = max_depth_penalty
|
||||
|
||||
def deduplicate(
|
||||
self,
|
||||
tree: CallTree,
|
||||
max_results: Optional[int] = None,
|
||||
) -> List[UniqueNode]:
|
||||
"""Extract unique nodes from the call tree.
|
||||
|
||||
Traverses the tree, groups nodes by their unique key (file_path,
|
||||
start_line, end_line), and merges duplicate occurrences.
|
||||
|
||||
Args:
|
||||
tree: CallTree to process
|
||||
max_results: Maximum number of results to return (None = all)
|
||||
|
||||
Returns:
|
||||
List of UniqueNode objects, sorted by score descending
|
||||
"""
|
||||
if not tree.node_list:
|
||||
return []
|
||||
|
||||
# Group nodes by unique key
|
||||
unique_map: Dict[tuple, UniqueNode] = {}
|
||||
|
||||
for node in tree.node_list:
|
||||
if node.is_cycle:
|
||||
# Skip cycle markers - they point to already-counted nodes
|
||||
continue
|
||||
|
||||
key = self._get_node_key(node)
|
||||
|
||||
if key in unique_map:
|
||||
# Update existing unique node
|
||||
unique_node = unique_map[key]
|
||||
unique_node.occurrences += 1
|
||||
unique_node.min_depth = min(unique_node.min_depth, node.depth)
|
||||
unique_node.add_path(node.path_from_root)
|
||||
|
||||
# Collect context from relationships
|
||||
for parent in node.parents:
|
||||
if not parent.is_cycle:
|
||||
unique_node.context_nodes.append(parent.node_id)
|
||||
for child in node.children:
|
||||
if not child.is_cycle:
|
||||
unique_node.context_nodes.append(child.node_id)
|
||||
else:
|
||||
# Create new unique node
|
||||
unique_node = UniqueNode(
|
||||
file_path=node.item.file_path,
|
||||
name=node.item.name,
|
||||
kind=node.item.kind,
|
||||
range=node.item.range,
|
||||
min_depth=node.depth,
|
||||
occurrences=1,
|
||||
paths=[node.path_from_root.copy()],
|
||||
context_nodes=[],
|
||||
score=0.0,
|
||||
)
|
||||
|
||||
# Collect initial context
|
||||
for parent in node.parents:
|
||||
if not parent.is_cycle:
|
||||
unique_node.context_nodes.append(parent.node_id)
|
||||
for child in node.children:
|
||||
if not child.is_cycle:
|
||||
unique_node.context_nodes.append(child.node_id)
|
||||
|
||||
unique_map[key] = unique_node
|
||||
|
||||
# Calculate scores for all unique nodes
|
||||
unique_nodes = list(unique_map.values())
|
||||
|
||||
# Find max frequency for normalization
|
||||
max_frequency = max((n.occurrences for n in unique_nodes), default=1)
|
||||
|
||||
for node in unique_nodes:
|
||||
node.score = self._score_node(node, max_frequency)
|
||||
|
||||
# Sort by score descending
|
||||
unique_nodes.sort(key=lambda n: n.score, reverse=True)
|
||||
|
||||
# Apply max_results limit
|
||||
if max_results is not None and max_results > 0:
|
||||
unique_nodes = unique_nodes[:max_results]
|
||||
|
||||
logger.debug(
|
||||
"Deduplicated %d tree nodes to %d unique nodes",
|
||||
len(tree.node_list),
|
||||
len(unique_nodes),
|
||||
)
|
||||
|
||||
return unique_nodes
|
||||
|
||||
def _score_node(
|
||||
self,
|
||||
node: UniqueNode,
|
||||
max_frequency: int,
|
||||
) -> float:
|
||||
"""Calculate composite score for a unique node.
|
||||
|
||||
Score = depth_weight * depth_score +
|
||||
frequency_weight * frequency_score +
|
||||
kind_weight * kind_score
|
||||
|
||||
Args:
|
||||
node: UniqueNode to score
|
||||
max_frequency: Maximum occurrence count for normalization
|
||||
|
||||
Returns:
|
||||
Composite score between 0.0 and 1.0
|
||||
"""
|
||||
# Depth score: closer to root = higher score
|
||||
# Score of 1.0 at depth 0, decreasing to 0.0 at max_depth_penalty
|
||||
depth_score = max(
|
||||
0.0,
|
||||
1.0 - (node.min_depth / self.max_depth_penalty),
|
||||
)
|
||||
|
||||
# Frequency score: more occurrences = higher score
|
||||
frequency_score = node.occurrences / max_frequency if max_frequency > 0 else 0.0
|
||||
|
||||
# Kind score: function/method > class > variable
|
||||
kind_str = str(node.kind).lower()
|
||||
kind_score = KIND_WEIGHTS.get(kind_str, KIND_WEIGHTS["unknown"])
|
||||
|
||||
# Composite score
|
||||
score = (
|
||||
self.depth_weight * depth_score
|
||||
+ self.frequency_weight * frequency_score
|
||||
+ self.kind_weight * kind_score
|
||||
)
|
||||
|
||||
return score
|
||||
|
||||
def _get_node_key(self, node: TreeNode) -> tuple:
|
||||
"""Get unique key for a tree node.
|
||||
|
||||
Uses (file_path, start_line, end_line) as the unique identifier.
|
||||
|
||||
Args:
|
||||
node: TreeNode
|
||||
|
||||
Returns:
|
||||
Tuple key for deduplication
|
||||
"""
|
||||
return (
|
||||
node.item.file_path,
|
||||
node.item.range.start_line,
|
||||
node.item.range.end_line,
|
||||
)
|
||||
|
||||
def filter_by_kind(
|
||||
self,
|
||||
nodes: List[UniqueNode],
|
||||
kinds: List[str],
|
||||
) -> List[UniqueNode]:
|
||||
"""Filter unique nodes by symbol kind.
|
||||
|
||||
Args:
|
||||
nodes: List of UniqueNode to filter
|
||||
kinds: List of allowed kinds (e.g., ["function", "method"])
|
||||
|
||||
Returns:
|
||||
Filtered list of UniqueNode
|
||||
"""
|
||||
kinds_lower = [k.lower() for k in kinds]
|
||||
return [
|
||||
node
|
||||
for node in nodes
|
||||
if str(node.kind).lower() in kinds_lower
|
||||
]
|
||||
|
||||
def filter_by_file(
|
||||
self,
|
||||
nodes: List[UniqueNode],
|
||||
file_patterns: List[str],
|
||||
) -> List[UniqueNode]:
|
||||
"""Filter unique nodes by file path patterns.
|
||||
|
||||
Args:
|
||||
nodes: List of UniqueNode to filter
|
||||
file_patterns: List of path substrings to match
|
||||
|
||||
Returns:
|
||||
Filtered list of UniqueNode
|
||||
"""
|
||||
return [
|
||||
node
|
||||
for node in nodes
|
||||
if any(pattern in node.file_path for pattern in file_patterns)
|
||||
]
|
||||
|
||||
def to_dict_list(self, nodes: List[UniqueNode]) -> List[Dict]:
|
||||
"""Convert list of UniqueNode to JSON-serializable dicts.
|
||||
|
||||
Args:
|
||||
nodes: List of UniqueNode
|
||||
|
||||
Returns:
|
||||
List of dictionaries
|
||||
"""
|
||||
return [
|
||||
{
|
||||
"file_path": node.file_path,
|
||||
"name": node.name,
|
||||
"kind": node.kind,
|
||||
"range": {
|
||||
"start_line": node.range.start_line,
|
||||
"start_character": node.range.start_character,
|
||||
"end_line": node.range.end_line,
|
||||
"end_character": node.range.end_character,
|
||||
},
|
||||
"min_depth": node.min_depth,
|
||||
"occurrences": node.occurrences,
|
||||
"path_count": len(node.paths),
|
||||
"score": round(node.score, 4),
|
||||
}
|
||||
for node in nodes
|
||||
]
|
||||
Reference in New Issue
Block a user