feat: add semantic graph design for static code analysis

- Introduced a comprehensive design document for a Code Semantic Graph aimed at enhancing static analysis capabilities.
- Defined the architecture, core components, and implementation steps for analyzing function calls, data flow, and dependencies.
- Included detailed specifications for nodes and edges in the graph, along with database schema for storage.
- Outlined phases for implementation, technical challenges, success metrics, and application scenarios.
This commit is contained in:
catlog22
2025-12-15 09:47:18 +08:00
parent d91477ad80
commit 3ffb907a6f
17 changed files with 4557 additions and 261 deletions

View File

@@ -43,4 +43,5 @@ Before implementation, always:
- `exact`: Known exact pattern
- `fuzzy`: Typo-tolerant search
- `semantic`: Concept-based search
- `graph`: Dependency analysis
- `graph`: Dependency analysis

View File

@@ -45,3 +45,49 @@
**Use semantic search** for exploratory tasks
**Use indexed search** for large, stable codebases
**Use Exa** for external/public knowledge
## ⚡ Core Search Tools
**rg (ripgrep)**: Fast content search with regex support
**find**: File/directory location by name patterns
**grep**: Built-in pattern matching (fallback when rg unavailable)
**get_modules_by_depth**: Program architecture analysis (MANDATORY before planning)
## 🔧 Quick Command Reference
```bash
# Semantic File Discovery (codebase-retrieval via CCW)
ccw cli exec "
PURPOSE: Discover files relevant to task/feature
TASK: • List all files related to [task/feature description]
MODE: analysis
CONTEXT: @**/*
EXPECTED: Relevant file paths with relevance explanation
RULES: Focus on direct relevance to task requirements | analysis=READ-ONLY
" --tool gemini --cd [directory]
# Program Architecture (MANDATORY before planning)
ccw tool exec get_modules_by_depth '{}'
# Content Search (rg preferred)
rg "pattern" --type js -n # Search JS files with line numbers
rg -i "case-insensitive" # Ignore case
rg -C 3 "context" # Show 3 lines before/after
# File Search
find . -name "*.ts" -type f # Find TypeScript files
find . -path "*/node_modules" -prune -o -name "*.js" -print
# Workflow Examples
rg "IMPL-\d+" .workflow/ --type json # Find task IDs
find .workflow/ -name "*.json" -path "*/.task/*" # Locate task files
rg "status.*pending" .workflow/.task/ # Find pending tasks
```
## ⚡ Performance Tips
- **rg > grep** for content search
- **Use --type filters** to limit file types
- **Exclude dirs**: `--glob '!node_modules'`
- **Use -F** for literal strings (no regex)

View File

@@ -13,7 +13,7 @@
**rg (ripgrep)**: Fast content search with regex support
**find**: File/directory location by name patterns
**grep**: Built-in pattern matching (fallback when rg unavailable)
**get_modules_by_depth.sh**: Program architecture analysis (MANDATORY before planning)
**get_modules_by_depth**: Program architecture analysis (MANDATORY before planning)

View File

@@ -1,22 +1,11 @@
{
"mcpServers": {
"test-mcp-server": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-filesystem",
"D:/Claude_dms3"
]
},
"ccw-tools": {
"command": "npx",
"args": [
"-y",
"ccw-mcp"
],
"env": {
"CCW_ENABLED_TOOLS": "write_file,edit_file,codex_lens,smart_search"
}
]
}
}
}
}

View File

@@ -1,190 +0,0 @@
# Implementation Summary: Rules CLI Generation Feature
## Status: ✅ Complete
## Files Modified
### D:\Claude_dms3\ccw\src\core\routes\rules-routes.ts
**Changes:**
1. Added import for `executeCliTool` from cli-executor
2. Implemented `generateRuleViaCLI()` function
3. Modified POST `/api/rules/create` endpoint to support `mode: 'cli-generate'`
## Implementation Details
### 1. New Function: `generateRuleViaCLI()`
**Location:** lines 224-340
**Purpose:** Generate rule content using Gemini CLI based on different generation strategies
**Parameters:**
- `generationType`: 'description' | 'template' | 'extract'
- `description`: Natural language description of the rule
- `templateType`: Template category for structured generation
- `extractScope`: File pattern for code analysis (e.g., 'src/**/*.ts')
- `extractFocus`: Focus areas for extraction (e.g., 'error handling, naming')
- `fileName`: Target filename (must end with .md)
- `location`: 'project' or 'user'
- `subdirectory`: Optional subdirectory path
- `projectPath`: Project root directory
**Process Flow:**
1. Parse parameters and determine generation type
2. Build appropriate CLI prompt template based on type
3. Execute Gemini CLI with:
- Tool: 'gemini'
- Mode: 'write' for description/template, 'analysis' for extract
- Timeout: 10 minutes (600000ms)
- Working directory: projectPath
4. Validate CLI execution result
5. Extract generated content from stdout
6. Call `createRule()` to save the file
7. Return result with execution ID
### 2. Prompt Templates
#### Description Mode (write)
```
PURPOSE: Generate Claude Code memory rule from description to guide Claude's behavior
TASK: • Analyze rule requirements • Generate markdown content with clear instructions
MODE: write
EXPECTED: Complete rule content in markdown format
RULES: $(cat ~/.claude/workflows/cli-templates/prompts/universal/00-universal-rigorous-style.txt)
```
#### Template Mode (write)
```
PURPOSE: Generate Claude Code rule from template type
TASK: • Create rule based on {templateType} • Generate structured markdown content
MODE: write
EXPECTED: Complete rule content in markdown format following template structure
RULES: $(cat ~/.claude/workflows/cli-templates/prompts/universal/00-universal-rigorous-style.txt)
```
#### Extract Mode (analysis)
```
PURPOSE: Extract coding rules from existing codebase to document patterns and conventions
TASK: • Analyze code patterns • Extract common conventions • Identify best practices
MODE: analysis
CONTEXT: @{extractScope || '**/*'}
EXPECTED: Rule content based on codebase analysis with examples
RULES: $(cat ~/.claude/workflows/cli-templates/prompts/analysis/02-analyze-code-patterns.txt)
```
### 3. API Endpoint Modification
**Endpoint:** POST `/api/rules/create`
**Enhanced Request Body:**
```json
{
"mode": "cli-generate", // NEW: triggers CLI generation
"generationType": "description", // NEW: 'description' | 'template' | 'extract'
"description": "...", // NEW: for description mode
"templateType": "...", // NEW: for template mode
"extractScope": "src/**/*.ts", // NEW: for extract mode
"extractFocus": "...", // NEW: for extract mode
"fileName": "rule-name.md", // REQUIRED
"location": "project", // REQUIRED: 'project' | 'user'
"subdirectory": "", // OPTIONAL
"projectPath": "..." // OPTIONAL: defaults to initialPath
}
```
**Backward Compatibility:** Existing manual creation still works:
```json
{
"fileName": "rule-name.md",
"content": "# Rule Content\n...",
"location": "project",
"paths": [],
"subdirectory": ""
}
```
**Response Format:**
```json
{
"success": true,
"fileName": "rule-name.md",
"location": "project",
"path": "/absolute/path/to/rule-name.md",
"subdirectory": null,
"generatedContent": "# Generated Content\n...",
"executionId": "1734168000000-gemini"
}
```
## Error Handling
### Validation Errors
- Missing `fileName`: "File name is required"
- Missing `location`: "Location is required (project or user)"
- Missing `generationType` in CLI mode: "generationType is required for CLI generation mode"
- Missing `description` for description mode: "description is required for description-based generation"
- Missing `templateType` for template mode: "templateType is required for template-based generation"
- Unknown `generationType`: "Unknown generation type: {type}"
### CLI Execution Errors
- CLI tool failure: Returns `{ error: "CLI execution failed: ...", stderr: "..." }`
- Empty content: Returns `{ error: "CLI execution returned empty content", stdout: "...", stderr: "..." }`
- Timeout: CLI executor will timeout after 10 minutes
- File exists: "Rule '{fileName}' already exists in {location} location"
## Testing
### Test Document
Created: `D:\Claude_dms3\test-rules-cli-generation.md`
Contains:
- API usage examples for all 3 generation types
- Request/response format examples
- Error handling scenarios
- Integration details
### Compilation Test
✅ TypeScript compilation successful (`npm run build`)
## Integration Points
### Dependencies
- **cli-executor.ts**: Provides `executeCliTool()` for Gemini execution
- **createRule()**: Existing function for file creation
- **handlePostRequest()**: Existing request handler from RouteContext
### CLI Tool
- **Tool**: Gemini (via `executeCliTool()`)
- **Timeout**: 10 minutes (600000ms)
- **Mode**: 'write' for generation, 'analysis' for extraction
- **Working Directory**: Project path for context access
## Next Steps (Not Implemented)
1. **UI Integration**: Add frontend interface in Rules Manager dashboard
2. **Streaming Output**: Display CLI execution progress in real-time
3. **Preview**: Show generated content before saving
4. **Refinement**: Allow iterative refinement of generated rules
5. **Templates Library**: Add predefined template types
6. **History**: Track generation history and allow regeneration
## Verification Checklist
- [x] Import cli-executor functions
- [x] Implement `generateRuleViaCLI()` with 3 generation types
- [x] Build appropriate prompts for each type
- [x] Use correct MODE (analysis vs write)
- [x] Set timeout to at least 10 minutes
- [x] Integrate with `createRule()` for file creation
- [x] Modify POST endpoint to support `mode: 'cli-generate'`
- [x] Validate required parameters
- [x] Return unified result format
- [x] Handle errors appropriately
- [x] Maintain backward compatibility
- [x] Verify TypeScript compilation
- [x] Create test documentation
## Files Created
- `D:\Claude_dms3\test-rules-cli-generation.md`: Test documentation
- `D:\Claude_dms3\IMPLEMENTATION_SUMMARY.md`: This file

View File

@@ -77,7 +77,7 @@ function getMcpServersFromFile(filePath) {
*/
function addMcpServerToMcpJson(projectPath, serverName, serverConfig) {
try {
const normalizedPath = normalizeProjectPathForConfig(projectPath);
const normalizedPath = normalizePathForFileSystem(projectPath);
const mcpJsonPath = join(normalizedPath, '.mcp.json');
// Read existing .mcp.json or create new structure
@@ -115,7 +115,7 @@ function addMcpServerToMcpJson(projectPath, serverName, serverConfig) {
*/
function removeMcpServerFromMcpJson(projectPath, serverName) {
try {
const normalizedPath = normalizeProjectPathForConfig(projectPath);
const normalizedPath = normalizePathForFileSystem(projectPath);
const mcpJsonPath = join(normalizedPath, '.mcp.json');
if (!existsSync(mcpJsonPath)) {
@@ -238,22 +238,43 @@ function getMcpConfig() {
}
/**
* Normalize project path for .claude.json (Windows backslash format)
* Normalize path to filesystem format (for accessing .mcp.json files)
* Always uses forward slashes for cross-platform compatibility
* @param {string} path
* @returns {string}
*/
function normalizeProjectPathForConfig(path) {
// Convert forward slashes to backslashes for Windows .claude.json format
let normalized = path.replace(/\//g, '\\');
// Handle /d/path format -> D:\path
if (normalized.match(/^\\[a-zA-Z]\\/)) {
function normalizePathForFileSystem(path) {
let normalized = path.replace(/\\/g, '/');
// Handle /d/path format -> D:/path
if (normalized.match(/^\/[a-zA-Z]\//)) {
normalized = normalized.charAt(1).toUpperCase() + ':' + normalized.slice(2);
}
return normalized;
}
/**
* Normalize project path to match existing format in .claude.json
* Checks both forward slash and backslash formats to find existing entry
* @param {string} path
* @param {Object} claudeConfig - Optional existing config to check format
* @returns {string}
*/
function normalizeProjectPathForConfig(path, claudeConfig = null) {
// IMPORTANT: Always normalize to forward slashes to prevent duplicate entries
// (e.g., prevents both "D:/Claude_dms3" and "D:\\Claude_dms3")
let normalizedForward = path.replace(/\\/g, '/');
// Handle /d/path format -> D:/path
if (normalizedForward.match(/^\/[a-zA-Z]\//)) {
normalizedForward = normalizedForward.charAt(1).toUpperCase() + ':' + normalizedForward.slice(2);
}
// ALWAYS return forward slash format to prevent duplicates
return normalizedForward;
}
/**
* Toggle MCP server enabled/disabled
* @param {string} projectPath
@@ -270,7 +291,7 @@ function toggleMcpServerEnabled(projectPath, serverName, enable) {
const content = readFileSync(CLAUDE_CONFIG_PATH, 'utf8');
const config = JSON.parse(content);
const normalizedPath = normalizeProjectPathForConfig(projectPath);
const normalizedPath = normalizeProjectPathForConfig(projectPath, config);
if (!config.projects || !config.projects[normalizedPath]) {
return { error: `Project not found: ${normalizedPath}` };
@@ -332,7 +353,7 @@ function addMcpServerToProject(projectPath, serverName, serverConfig, useLegacyC
const content = readFileSync(CLAUDE_CONFIG_PATH, 'utf8');
const config = JSON.parse(content);
const normalizedPath = normalizeProjectPathForConfig(projectPath);
const normalizedPath = normalizeProjectPathForConfig(projectPath, config);
// Create project entry if it doesn't exist
if (!config.projects) {
@@ -387,8 +408,8 @@ function addMcpServerToProject(projectPath, serverName, serverConfig, useLegacyC
*/
function removeMcpServerFromProject(projectPath, serverName) {
try {
const normalizedPath = normalizeProjectPathForConfig(projectPath);
const mcpJsonPath = join(normalizedPath, '.mcp.json');
const normalizedPathForFile = normalizePathForFileSystem(projectPath);
const mcpJsonPath = join(normalizedPathForFile, '.mcp.json');
let removedFromMcpJson = false;
let removedFromClaudeJson = false;
@@ -409,6 +430,9 @@ function removeMcpServerFromProject(projectPath, serverName) {
const content = readFileSync(CLAUDE_CONFIG_PATH, 'utf8');
const config = JSON.parse(content);
// Get normalized path that matches existing config format
const normalizedPath = normalizeProjectPathForConfig(projectPath, config);
if (config.projects && config.projects[normalizedPath]) {
const projectConfig = config.projects[normalizedPath];
@@ -597,11 +621,13 @@ export async function handleMcpRoutes(ctx: RouteContext): Promise<boolean> {
// API: Copy MCP server to project
if (pathname === '/api/mcp-copy-server' && req.method === 'POST') {
handlePostRequest(req, res, async (body) => {
const { projectPath, serverName, serverConfig } = body;
const { projectPath, serverName, serverConfig, configType } = body;
if (!projectPath || !serverName || !serverConfig) {
return { error: 'projectPath, serverName, and serverConfig are required', status: 400 };
}
return addMcpServerToProject(projectPath, serverName, serverConfig);
// configType: 'mcp' = use .mcp.json (default), 'claude' = use .claude.json
const useLegacyConfig = configType === 'claude';
return addMcpServerToProject(projectPath, serverName, serverConfig, useLegacyConfig);
});
return true;
}

View File

@@ -733,7 +733,7 @@ Return ONLY valid JSON in this exact format (no markdown, no code blocks, just p
}
try {
const configPath = join(projectPath, '.claude', 'rules', 'active_memory.md');
const configPath = join(projectPath, '.claude', 'CLAUDE.md');
const configJsonPath = join(projectPath, '.claude', 'active_memory_config.json');
const enabled = existsSync(configPath);
let lastSync: string | null = null;
@@ -784,16 +784,12 @@ Return ONLY valid JSON in this exact format (no markdown, no code blocks, just p
return;
}
const rulesDir = join(projectPath, '.claude', 'rules');
const claudeDir = join(projectPath, '.claude');
const configPath = join(rulesDir, 'active_memory.md');
const configPath = join(claudeDir, 'CLAUDE.md');
const configJsonPath = join(claudeDir, 'active_memory_config.json');
if (enabled) {
// Enable: Create directories and initial file
if (!existsSync(rulesDir)) {
mkdirSync(rulesDir, { recursive: true });
}
if (!existsSync(claudeDir)) {
mkdirSync(claudeDir, { recursive: true });
}
@@ -803,8 +799,8 @@ Return ONLY valid JSON in this exact format (no markdown, no code blocks, just p
writeFileSync(configJsonPath, JSON.stringify(config, null, 2), 'utf-8');
}
// Create initial active_memory.md with header
const initialContent = `# Active Memory
// Create initial CLAUDE.md with header
const initialContent = `# CLAUDE.md - Project Memory
> Auto-generated understanding of frequently accessed files.
> Last updated: ${new Date().toISOString()}
@@ -867,7 +863,7 @@ Return ONLY valid JSON in this exact format (no markdown, no code blocks, just p
return true;
}
// API: Active Memory - Sync (analyze hot files using CLI and update active_memory.md)
// API: Active Memory - Sync (analyze hot files using CLI and update CLAUDE.md)
if (pathname === '/api/memory/active/sync' && req.method === 'POST') {
let body = '';
req.on('data', (chunk: Buffer) => { body += chunk.toString(); });
@@ -882,8 +878,8 @@ Return ONLY valid JSON in this exact format (no markdown, no code blocks, just p
return;
}
const rulesDir = join(projectPath, '.claude', 'rules');
const configPath = join(rulesDir, 'active_memory.md');
const claudeDir = join(projectPath, '.claude');
const configPath = join(claudeDir, 'CLAUDE.md');
// Get hot files from memory store - with fallback
let hotFiles: any[] = [];
@@ -903,8 +899,8 @@ Return ONLY valid JSON in this exact format (no markdown, no code blocks, just p
return isAbsolute(filePath) ? filePath : join(projectPath, filePath);
}).filter((p: string) => existsSync(p));
// Build the active memory content header
let content = `# Active Memory
// Build the CLAUDE.md content header
let content = `# CLAUDE.md - Project Memory
> Auto-generated understanding of frequently accessed files using ${tool.toUpperCase()}.
> Last updated: ${new Date().toISOString()}
@@ -942,14 +938,29 @@ RULES: Be concise. Focus on practical understanding. Include function signatures
});
if (result.success && result.execution?.output) {
// Extract stdout from output object
cliOutput = typeof result.execution.output === 'string'
? result.execution.output
: result.execution.output.stdout || '';
// Extract stdout from output object with proper serialization
const output = result.execution.output;
if (typeof output === 'string') {
cliOutput = output;
} else if (output && typeof output === 'object') {
// Handle object output - extract stdout or serialize the object
if (output.stdout && typeof output.stdout === 'string') {
cliOutput = output.stdout;
} else if (output.stderr && typeof output.stderr === 'string') {
cliOutput = output.stderr;
} else {
// Last resort: serialize the entire object as JSON
cliOutput = JSON.stringify(output, null, 2);
}
} else {
cliOutput = '';
}
}
// Add CLI output to content
content += cliOutput + '\n\n---\n\n';
// Add CLI output to content (only if not empty)
if (cliOutput && cliOutput.trim()) {
content += cliOutput + '\n\n---\n\n';
}
} catch (cliErr) {
// Fallback to basic analysis if CLI fails
@@ -1007,8 +1018,8 @@ RULES: Be concise. Focus on practical understanding. Include function signatures
}
// Ensure directory exists
if (!existsSync(rulesDir)) {
mkdirSync(rulesDir, { recursive: true });
if (!existsSync(claudeDir)) {
mkdirSync(claudeDir, { recursive: true });
}
// Write the file

View File

@@ -87,15 +87,23 @@ async function toggleMcpServer(serverName, enable) {
}
}
async function copyMcpServerToProject(serverName, serverConfig) {
async function copyMcpServerToProject(serverName, serverConfig, configType = null) {
try {
// If configType not specified, ask user to choose
if (!configType) {
const choice = await showConfigTypeDialog();
if (!choice) return null; // User cancelled
configType = choice;
}
const response = await fetch('/api/mcp-copy-server', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
projectPath: projectPath,
serverName: serverName,
serverConfig: serverConfig
serverConfig: serverConfig,
configType: configType // 'claude' for .claude.json, 'mcp' for .mcp.json
})
});
@@ -105,7 +113,8 @@ async function copyMcpServerToProject(serverName, serverConfig) {
if (result.success) {
await loadMcpConfig();
renderMcpManager();
showRefreshToast(`MCP server "${serverName}" added to project`, 'success');
const location = configType === 'mcp' ? '.mcp.json' : '.claude.json';
showRefreshToast(`MCP server "${serverName}" added to project (${location})`, 'success');
}
return result;
} catch (err) {
@@ -115,6 +124,53 @@ async function copyMcpServerToProject(serverName, serverConfig) {
}
}
// Show dialog to let user choose config type
function showConfigTypeDialog() {
return new Promise((resolve) => {
const dialog = document.createElement('div');
dialog.className = 'fixed inset-0 bg-black/50 flex items-center justify-center z-50';
dialog.innerHTML = `
<div class="bg-card border border-border rounded-lg shadow-lg p-6 max-w-md w-full mx-4">
<h3 class="text-lg font-semibold mb-4">${t('mcp.chooseInstallLocation')}</h3>
<div class="space-y-3 mb-6">
<button class="config-type-option w-full text-left px-4 py-3 border border-border rounded-lg hover:bg-accent hover:border-primary transition-all" data-type="claude">
<div class="font-medium">${t('mcp.installToClaudeJson')}</div>
<div class="text-sm text-muted-foreground mt-1">${t('mcp.claudeJsonDesc')}</div>
</button>
<button class="config-type-option w-full text-left px-4 py-3 border border-border rounded-lg hover:bg-accent hover:border-primary transition-all" data-type="mcp">
<div class="font-medium">${t('mcp.installToMcpJson')}</div>
<div class="text-sm text-muted-foreground mt-1">${t('mcp.mcpJsonDesc')}</div>
</button>
</div>
<button class="cancel-btn w-full px-4 py-2 border border-border rounded-lg hover:bg-accent transition-colors">${t('common.cancel')}</button>
</div>
`;
document.body.appendChild(dialog);
const options = dialog.querySelectorAll('.config-type-option');
options.forEach(btn => {
btn.addEventListener('click', () => {
resolve(btn.dataset.type);
document.body.removeChild(dialog);
});
});
const cancelBtn = dialog.querySelector('.cancel-btn');
cancelBtn.addEventListener('click', () => {
resolve(null);
document.body.removeChild(dialog);
});
// Close on backdrop click
dialog.addEventListener('click', (e) => {
if (e.target === dialog) {
resolve(null);
document.body.removeChild(dialog);
}
});
});
}
async function removeMcpServerFromProject(serverName) {
try {
const response = await fetch('/api/mcp-remove-server', {

View File

@@ -431,7 +431,31 @@ const i18n = {
'mcp.jsonFormatsHint': 'Supports {"servers": {...}}, {"mcpServers": {...}}, and direct server config formats.',
'mcp.previewServers': 'Preview (servers to be added):',
'mcp.create': 'Create',
'mcp.chooseInstallLocation': 'Choose Installation Location',
'mcp.installToClaudeJson': 'Install to .claude.json',
'mcp.installToMcpJson': 'Install to .mcp.json (Recommended)',
'mcp.claudeJsonDesc': 'Save in root .claude.json projects section (shared config)',
'mcp.mcpJsonDesc': 'Save in project .mcp.json file (recommended for version control)',
// MCP Templates
'mcp.templates': 'MCP Templates',
'mcp.savedTemplates': 'saved templates',
'mcp.saveAsTemplate': 'Save as Template',
'mcp.enterTemplateName': 'Enter template name',
'mcp.enterTemplateDesc': 'Enter template description (optional)',
'mcp.enterServerName': 'Enter server name',
'mcp.templateSaved': 'Template "{name}" saved successfully',
'mcp.templateSaveFailed': 'Failed to save template: {error}',
'mcp.templateNotFound': 'Template "{name}" not found',
'mcp.templateInstalled': 'Server "{name}" installed successfully',
'mcp.templateInstallFailed': 'Failed to install template: {error}',
'mcp.deleteTemplate': 'Delete Template',
'mcp.deleteTemplateConfirm': 'Delete template "{name}"?',
'mcp.templateDeleted': 'Template "{name}" deleted successfully',
'mcp.templateDeleteFailed': 'Failed to delete template: {error}',
'mcp.toProject': 'To Project',
'mcp.toGlobal': 'To Global',
// Hook Manager
'hook.projectHooks': 'Project Hooks',
'hook.projectFile': '.claude/settings.json',
@@ -1346,6 +1370,11 @@ const i18n = {
'mcp.jsonFormatsHint': '支持 {"servers": {...}}、{"mcpServers": {...}} 和直接服务器配置格式。',
'mcp.previewServers': '预览(将添加的服务器):',
'mcp.create': '创建',
'mcp.chooseInstallLocation': '选择安装位置',
'mcp.installToClaudeJson': '安装到 .claude.json',
'mcp.installToMcpJson': '安装到 .mcp.json推荐',
'mcp.claudeJsonDesc': '保存在根目录 .claude.json projects 字段下(共享配置)',
'mcp.mcpJsonDesc': '保存在项目 .mcp.json 文件中(推荐用于版本控制)',
// Hook Manager
'hook.projectHooks': '项目钩子',

View File

@@ -43,6 +43,9 @@ async function renderMcpManager() {
await loadMcpConfig();
}
// Load MCP templates
await loadMcpTemplates();
const currentPath = projectPath.replace(/\//g, '\\');
const projectData = mcpAllProjects[currentPath] || {};
const projectServers = projectData.mcpServers || {};
@@ -269,6 +272,77 @@ async function renderMcpManager() {
`}
</div>
<!-- MCP Templates Section -->
${mcpTemplates.length > 0 ? `
<div class="mcp-section mt-6">
<div class="flex items-center justify-between mb-4">
<h3 class="text-lg font-semibold text-foreground flex items-center gap-2">
<i data-lucide="layout-template" class="w-5 h-5"></i>
${t('mcp.templates')}
</h3>
<span class="text-sm text-muted-foreground">${mcpTemplates.length} ${t('mcp.savedTemplates')}</span>
</div>
<div class="grid grid-cols-1 md:grid-cols-2 lg:grid-cols-3 gap-4">
${mcpTemplates.map(template => `
<div class="mcp-template-card bg-card border border-border rounded-lg p-4 hover:shadow-md transition-all">
<div class="flex items-start justify-between mb-3">
<div class="flex-1 min-w-0">
<h4 class="font-semibold text-foreground truncate flex items-center gap-2">
<i data-lucide="layout-template" class="w-4 h-4 shrink-0"></i>
<span class="truncate">${escapeHtml(template.name)}</span>
</h4>
${template.description ? `
<p class="text-xs text-muted-foreground mt-1 line-clamp-2">${escapeHtml(template.description)}</p>
` : ''}
</div>
</div>
<div class="mcp-server-details text-sm space-y-1 mb-3">
<div class="flex items-center gap-2 text-muted-foreground">
<span class="font-mono text-xs bg-muted px-1.5 py-0.5 rounded">cmd</span>
<span class="truncate text-xs" title="${escapeHtml(template.serverConfig.command)}">${escapeHtml(template.serverConfig.command)}</span>
</div>
${template.serverConfig.args && template.serverConfig.args.length > 0 ? `
<div class="flex items-start gap-2 text-muted-foreground">
<span class="font-mono text-xs bg-muted px-1.5 py-0.5 rounded shrink-0">args</span>
<span class="text-xs font-mono truncate" title="${escapeHtml(template.serverConfig.args.join(' '))}">${escapeHtml(template.serverConfig.args.slice(0, 2).join(' '))}${template.serverConfig.args.length > 2 ? '...' : ''}</span>
</div>
` : ''}
</div>
<div class="mt-3 pt-3 border-t border-border flex items-center justify-between gap-2">
<div class="flex items-center gap-2">
<button class="text-xs text-primary hover:text-primary/80 transition-colors flex items-center gap-1"
data-template-name="${escapeHtml(template.name)}"
data-scope="project"
data-action="install-template"
title="${t('mcp.installToProject')}">
<i data-lucide="download" class="w-3 h-3"></i>
${t('mcp.toProject')}
</button>
<button class="text-xs text-success hover:text-success/80 transition-colors flex items-center gap-1"
data-template-name="${escapeHtml(template.name)}"
data-scope="global"
data-action="install-template"
title="${t('mcp.installToGlobal')}">
<i data-lucide="globe" class="w-3 h-3"></i>
${t('mcp.toGlobal')}
</button>
</div>
<button class="text-xs text-destructive hover:text-destructive/80 transition-colors"
data-template-name="${escapeHtml(template.name)}"
data-action="delete-template"
title="${t('mcp.deleteTemplate')}">
<i data-lucide="trash-2" class="w-3 h-3"></i>
</button>
</div>
</div>
`).join('')}
</div>
</div>
` : ''}
<!-- All Projects MCP Overview Table -->
<div class="mcp-section mt-6">
<div class="flex items-center justify-between mb-4">
@@ -402,15 +476,25 @@ function renderProjectAvailableServerCard(entry) {
` : ''}
</div>
<div class="mt-3 pt-3 border-t border-border flex items-center justify-between">
<button class="text-xs text-primary hover:text-primary/80 transition-colors flex items-center gap-1"
data-server-name="${escapeHtml(name)}"
data-server-config="${escapeHtml(JSON.stringify(config))}"
data-scope="${source === 'global' ? 'global' : 'project'}"
data-action="copy-install-cmd">
<i data-lucide="copy" class="w-3 h-3"></i>
${t('mcp.copyInstallCmd')}
</button>
<div class="mt-3 pt-3 border-t border-border flex items-center justify-between gap-2">
<div class="flex items-center gap-2">
<button class="text-xs text-primary hover:text-primary/80 transition-colors flex items-center gap-1"
data-server-name="${escapeHtml(name)}"
data-server-config="${escapeHtml(JSON.stringify(config))}"
data-scope="${source === 'global' ? 'global' : 'project'}"
data-action="copy-install-cmd">
<i data-lucide="copy" class="w-3 h-3"></i>
${t('mcp.copyInstallCmd')}
</button>
<button class="text-xs text-success hover:text-success/80 transition-colors flex items-center gap-1"
data-server-name="${escapeHtml(name)}"
data-server-config="${escapeHtml(JSON.stringify(config))}"
data-action="save-as-template"
title="${t('mcp.saveAsTemplate')}">
<i data-lucide="save" class="w-3 h-3"></i>
${t('mcp.saveAsTemplate')}
</button>
</div>
${canRemove ? `
<button class="text-xs text-destructive hover:text-destructive/80 transition-colors"
data-server-name="${escapeHtml(name)}"
@@ -617,4 +701,156 @@ function attachMcpEventListeners() {
await copyMcpInstallCommand(serverName, serverConfig, scope);
});
});
// Save as template buttons
document.querySelectorAll('.mcp-server-card button[data-action="save-as-template"]').forEach(btn => {
btn.addEventListener('click', async (e) => {
const serverName = btn.dataset.serverName;
const serverConfig = JSON.parse(btn.dataset.serverConfig);
await saveMcpAsTemplate(serverName, serverConfig);
});
});
// Install from template buttons
document.querySelectorAll('.mcp-template-card button[data-action="install-template"]').forEach(btn => {
btn.addEventListener('click', async (e) => {
const templateName = btn.dataset.templateName;
const scope = btn.dataset.scope || 'project';
await installFromTemplate(templateName, scope);
});
});
// Delete template buttons
document.querySelectorAll('.mcp-template-card button[data-action="delete-template"]').forEach(btn => {
btn.addEventListener('click', async (e) => {
const templateName = btn.dataset.templateName;
if (confirm(t('mcp.deleteTemplateConfirm', { name: templateName }))) {
await deleteMcpTemplate(templateName);
}
});
});
}
// ========================================
// MCP Template Management Functions
// ========================================
let mcpTemplates = [];
/**
* Load all MCP templates from API
*/
async function loadMcpTemplates() {
try {
const response = await fetch('/api/mcp-templates');
const data = await response.json();
if (data.success) {
mcpTemplates = data.templates || [];
console.log('[MCP Templates] Loaded', mcpTemplates.length, 'templates');
} else {
console.error('[MCP Templates] Failed to load:', data.error);
mcpTemplates = [];
}
return mcpTemplates;
} catch (error) {
console.error('[MCP Templates] Error loading templates:', error);
mcpTemplates = [];
return [];
}
}
/**
* Save MCP server configuration as a template
*/
async function saveMcpAsTemplate(serverName, serverConfig) {
try {
// Prompt for template name and description
const templateName = prompt(t('mcp.enterTemplateName'), serverName);
if (!templateName) return;
const description = prompt(t('mcp.enterTemplateDesc'), `Template for ${serverName}`);
const payload = {
name: templateName,
description: description || '',
serverConfig: serverConfig,
category: 'user'
};
const response = await fetch('/api/mcp-templates', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(payload)
});
const data = await response.json();
if (data.success) {
showNotification(t('mcp.templateSaved', { name: templateName }), 'success');
await loadMcpTemplates();
await renderMcpManager(); // Refresh view
} else {
showNotification(t('mcp.templateSaveFailed', { error: data.error }), 'error');
}
} catch (error) {
console.error('[MCP] Save template error:', error);
showNotification(t('mcp.templateSaveFailed', { error: error.message }), 'error');
}
}
/**
* Install MCP server from template
*/
async function installFromTemplate(templateName, scope = 'project') {
try {
// Find template
const template = mcpTemplates.find(t => t.name === templateName);
if (!template) {
showNotification(t('mcp.templateNotFound', { name: templateName }), 'error');
return;
}
// Prompt for server name (default to template name)
const serverName = prompt(t('mcp.enterServerName'), templateName);
if (!serverName) return;
// Install based on scope
if (scope === 'project') {
await installMcpToProject(serverName, template.serverConfig);
} else if (scope === 'global') {
await addGlobalMcpServer(serverName, template.serverConfig);
}
showNotification(t('mcp.templateInstalled', { name: serverName }), 'success');
await renderMcpManager();
} catch (error) {
console.error('[MCP] Install from template error:', error);
showNotification(t('mcp.templateInstallFailed', { error: error.message }), 'error');
}
}
/**
* Delete MCP template
*/
async function deleteMcpTemplate(templateName) {
try {
const response = await fetch(`/api/mcp-templates/${encodeURIComponent(templateName)}`, {
method: 'DELETE'
});
const data = await response.json();
if (data.success) {
showNotification(t('mcp.templateDeleted', { name: templateName }), 'success');
await loadMcpTemplates();
await renderMcpManager();
} else {
showNotification(t('mcp.templateDeleteFailed', { error: data.error }), 'error');
}
} catch (error) {
console.error('[MCP] Delete template error:', error);
showNotification(t('mcp.templateDeleteFailed', { error: error.message }), 'error');
}
}

View File

@@ -588,9 +588,21 @@ function closeRuleCreateModal(event) {
function selectRuleLocation(location) {
ruleCreateState.location = location;
// Re-render modal
closeRuleCreateModal();
openRuleCreateModal();
// Update button styles without re-rendering modal
const buttons = document.querySelectorAll('.location-btn');
buttons.forEach(btn => {
const isProject = btn.querySelector('.font-medium')?.textContent?.includes(t('rules.projectRules'));
const isUser = btn.querySelector('.font-medium')?.textContent?.includes(t('rules.userRules'));
if ((isProject && location === 'project') || (isUser && location === 'user')) {
btn.classList.remove('border-border', 'hover:border-primary/50');
btn.classList.add('border-primary', 'bg-primary/10');
} else {
btn.classList.remove('border-primary', 'bg-primary/10');
btn.classList.add('border-border', 'hover:border-primary/50');
}
});
}
function toggleRuleConditional() {

View File

@@ -569,9 +569,21 @@ function closeSkillCreateModal(event) {
function selectSkillLocation(location) {
skillCreateState.location = location;
// Re-render modal
closeSkillCreateModal();
openSkillCreateModal();
// Update button styles without re-rendering modal
const buttons = document.querySelectorAll('.location-btn');
buttons.forEach(btn => {
const isProject = btn.querySelector('.font-medium')?.textContent?.includes(t('skills.projectSkills'));
const isUser = btn.querySelector('.font-medium')?.textContent?.includes(t('skills.userSkills'));
if ((isProject && location === 'project') || (isUser && location === 'user')) {
btn.classList.remove('border-border', 'hover:border-primary/50');
btn.classList.add('border-primary', 'bg-primary/10');
} else {
btn.classList.remove('border-primary', 'bg-primary/10');
btn.classList.add('border-border', 'hover:border-primary/50');
}
});
}
function switchSkillCreateMode(mode) {

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,972 @@
# Docstring与LLM混合策略设计方案
## 1. 背景与目标
### 1.1 当前问题
现有 `llm_enhancer.py` 的实现存在以下问题:
1. **忽略已有文档**对所有代码无差别调用LLM即使已有高质量的docstring
2. **成本浪费**重复生成已有信息增加API调用费用和时间
3. **信息质量不一致**LLM生成的内容可能不如作者编写的docstring准确
4. **缺少作者意图**丢失了docstring中的设计决策、使用示例等关键信息
### 1.2 设计目标
实现**智能混合策略**结合docstring和LLM的优势
1. **优先使用docstring**:作为最权威的信息源
2. **LLM作为补充**填补docstring缺失或质量不足的部分
3. **智能质量评估**自动判断docstring质量决定是否需要LLM增强
4. **成本优化**减少不必要的LLM调用降低API费用
5. **信息融合**将docstring和LLM生成的内容有机结合
## 2. 技术架构
### 2.1 整体流程
```
Code Symbol
[Docstring Extractor] ← 提取docstring
[Quality Evaluator] ← 评估docstring质量
├─ High Quality → Use Docstring Directly
│ + LLM Generate Keywords Only
├─ Medium Quality → LLM Refine & Enhance
│ (docstring作为base)
└─ Low/No Docstring → LLM Full Generation
(现有流程)
[Metadata Merger] ← 合并docstring和LLM内容
Final SemanticMetadata
```
### 2.2 核心组件
```python
from dataclasses import dataclass
from enum import Enum
from typing import Optional
class DocstringQuality(Enum):
"""Docstring质量等级"""
MISSING = "missing" # 无docstring
LOW = "low" # 质量低:<10字符或纯占位符
MEDIUM = "medium" # 质量中:有基本描述但不完整
HIGH = "high" # 质量高:详细且结构化
@dataclass
class DocstringMetadata:
"""从docstring提取的元数据"""
raw_text: str
quality: DocstringQuality
summary: Optional[str] = None # 提取的摘要
parameters: Optional[dict] = None # 参数说明
returns: Optional[str] = None # 返回值说明
examples: Optional[str] = None # 使用示例
notes: Optional[str] = None # 注意事项
```
## 3. 详细实现步骤
### 3.1 Docstring提取与解析
```python
import re
from typing import Optional
class DocstringExtractor:
"""Docstring提取器"""
# Docstring风格正则
GOOGLE_STYLE_PATTERN = re.compile(
r'Args:|Returns:|Raises:|Examples:|Note:',
re.MULTILINE
)
NUMPY_STYLE_PATTERN = re.compile(
r'Parameters\n-+|Returns\n-+|Examples\n-+',
re.MULTILINE
)
def extract_from_code(self, content: str, symbol: Symbol) -> Optional[str]:
"""从代码中提取docstring"""
lines = content.splitlines()
start_line = symbol.range[0] - 1 # 0-indexed
# 查找函数定义后的第一个字符串字面量
# 通常在函数定义的下一行或几行内
for i in range(start_line + 1, min(start_line + 10, len(lines))):
line = lines[i].strip()
# Python triple-quoted string
if line.startswith('"""') or line.startswith("'''"):
return self._extract_multiline_docstring(lines, i)
return None
def _extract_multiline_docstring(
self,
lines: List[str],
start_idx: int
) -> str:
"""提取多行docstring"""
quote_char = '"""' if lines[start_idx].strip().startswith('"""') else "'''"
docstring_lines = []
# 检查是否单行docstring
first_line = lines[start_idx].strip()
if first_line.count(quote_char) == 2:
# 单行: """This is a docstring."""
return first_line.strip(quote_char).strip()
# 多行docstring
in_docstring = True
for i in range(start_idx, len(lines)):
line = lines[i]
if i == start_idx:
# 第一行:移除开始的引号
docstring_lines.append(line.strip().lstrip(quote_char))
elif quote_char in line:
# 结束行:移除结束的引号
docstring_lines.append(line.strip().rstrip(quote_char))
break
else:
docstring_lines.append(line.strip())
return '\n'.join(docstring_lines).strip()
def parse_docstring(self, raw_docstring: str) -> DocstringMetadata:
"""解析docstring提取结构化信息"""
if not raw_docstring:
return DocstringMetadata(
raw_text="",
quality=DocstringQuality.MISSING
)
# 评估质量
quality = self._evaluate_quality(raw_docstring)
# 提取各个部分
metadata = DocstringMetadata(
raw_text=raw_docstring,
quality=quality,
)
# 提取摘要(第一行或第一段)
metadata.summary = self._extract_summary(raw_docstring)
# 如果是Google或NumPy风格提取结构化内容
if self.GOOGLE_STYLE_PATTERN.search(raw_docstring):
self._parse_google_style(raw_docstring, metadata)
elif self.NUMPY_STYLE_PATTERN.search(raw_docstring):
self._parse_numpy_style(raw_docstring, metadata)
return metadata
def _evaluate_quality(self, docstring: str) -> DocstringQuality:
"""评估docstring质量"""
if not docstring or len(docstring.strip()) == 0:
return DocstringQuality.MISSING
# 检查是否是占位符
placeholders = ['todo', 'fixme', 'tbd', 'placeholder', '...']
if any(p in docstring.lower() for p in placeholders):
return DocstringQuality.LOW
# 长度检查
if len(docstring.strip()) < 10:
return DocstringQuality.LOW
# 检查是否有结构化内容
has_structure = (
self.GOOGLE_STYLE_PATTERN.search(docstring) or
self.NUMPY_STYLE_PATTERN.search(docstring)
)
# 检查是否有足够的描述性文本
word_count = len(docstring.split())
if has_structure and word_count >= 20:
return DocstringQuality.HIGH
elif word_count >= 10:
return DocstringQuality.MEDIUM
else:
return DocstringQuality.LOW
def _extract_summary(self, docstring: str) -> str:
"""提取摘要(第一行或第一段)"""
lines = docstring.split('\n')
# 第一行非空行作为摘要
for line in lines:
if line.strip():
return line.strip()
return ""
def _parse_google_style(self, docstring: str, metadata: DocstringMetadata):
"""解析Google风格docstring"""
# 提取Args
args_match = re.search(r'Args:(.*?)(?=Returns:|Raises:|Examples:|Note:|\Z)', docstring, re.DOTALL)
if args_match:
metadata.parameters = self._parse_args_section(args_match.group(1))
# 提取Returns
returns_match = re.search(r'Returns:(.*?)(?=Raises:|Examples:|Note:|\Z)', docstring, re.DOTALL)
if returns_match:
metadata.returns = returns_match.group(1).strip()
# 提取Examples
examples_match = re.search(r'Examples:(.*?)(?=Note:|\Z)', docstring, re.DOTALL)
if examples_match:
metadata.examples = examples_match.group(1).strip()
def _parse_args_section(self, args_text: str) -> dict:
"""解析参数列表"""
params = {}
# 匹配 "param_name (type): description" 或 "param_name: description"
pattern = re.compile(r'(\w+)\s*(?:\(([^)]+)\))?\s*:\s*(.+)')
for line in args_text.split('\n'):
match = pattern.search(line.strip())
if match:
param_name, param_type, description = match.groups()
params[param_name] = {
'type': param_type,
'description': description.strip()
}
return params
```
### 3.2 智能混合策略引擎
```python
class HybridEnhancer:
"""Docstring与LLM混合增强器"""
def __init__(
self,
llm_enhancer: LLMEnhancer,
docstring_extractor: DocstringExtractor
):
self.llm_enhancer = llm_enhancer
self.docstring_extractor = docstring_extractor
def enhance_with_strategy(
self,
file_data: FileData,
symbols: List[Symbol]
) -> Dict[str, SemanticMetadata]:
"""根据docstring质量选择增强策略"""
results = {}
for symbol in symbols:
# 1. 提取并解析docstring
raw_docstring = self.docstring_extractor.extract_from_code(
file_data.content, symbol
)
doc_metadata = self.docstring_extractor.parse_docstring(raw_docstring or "")
# 2. 根据质量选择策略
semantic_metadata = self._apply_strategy(
file_data, symbol, doc_metadata
)
results[symbol.name] = semantic_metadata
return results
def _apply_strategy(
self,
file_data: FileData,
symbol: Symbol,
doc_metadata: DocstringMetadata
) -> SemanticMetadata:
"""应用混合策略"""
quality = doc_metadata.quality
if quality == DocstringQuality.HIGH:
# 高质量直接使用docstring只用LLM生成keywords
return self._use_docstring_with_llm_keywords(symbol, doc_metadata)
elif quality == DocstringQuality.MEDIUM:
# 中等质量让LLM精炼和增强
return self._refine_with_llm(file_data, symbol, doc_metadata)
else: # LOW or MISSING
# 低质量或无完全由LLM生成
return self._full_llm_generation(file_data, symbol)
def _use_docstring_with_llm_keywords(
self,
symbol: Symbol,
doc_metadata: DocstringMetadata
) -> SemanticMetadata:
"""策略1使用docstringLLM只生成keywords"""
# 直接使用docstring的摘要
summary = doc_metadata.summary or doc_metadata.raw_text[:200]
# 使用LLM生成keywords
keywords = self._generate_keywords_only(summary, symbol.name)
# 从docstring推断purpose
purpose = self._infer_purpose_from_docstring(doc_metadata)
return SemanticMetadata(
summary=summary,
keywords=keywords,
purpose=purpose,
file_path=symbol.file_path if hasattr(symbol, 'file_path') else None,
symbol_name=symbol.name,
llm_tool="hybrid_docstring_primary",
)
def _refine_with_llm(
self,
file_data: FileData,
symbol: Symbol,
doc_metadata: DocstringMetadata
) -> SemanticMetadata:
"""策略2让LLM精炼和增强docstring"""
prompt = f"""
PURPOSE: Refine and enhance an existing docstring for better semantic search
TASK:
- Review the existing docstring
- Generate a concise summary (1-2 sentences) that captures the core purpose
- Extract 8-12 relevant keywords for search
- Identify the functional category/purpose
EXISTING DOCSTRING:
{doc_metadata.raw_text}
CODE CONTEXT:
Function: {symbol.name}
```{file_data.language}
{self._get_symbol_code(file_data.content, symbol)}
```
OUTPUT: JSON format
{{
"summary": "refined summary based on docstring and code",
"keywords": ["keyword1", "keyword2", ...],
"purpose": "category"
}}
"""
response = self.llm_enhancer._invoke_ccw_cli(prompt, tool='gemini')
if response['success']:
data = json.loads(self.llm_enhancer._extract_json(response['stdout']))
return SemanticMetadata(
summary=data.get('summary', doc_metadata.summary),
keywords=data.get('keywords', []),
purpose=data.get('purpose', 'unknown'),
file_path=file_data.path,
symbol_name=symbol.name,
llm_tool="hybrid_llm_refined",
)
# Fallback: 使用docstring
return self._use_docstring_with_llm_keywords(symbol, doc_metadata)
def _full_llm_generation(
self,
file_data: FileData,
symbol: Symbol
) -> SemanticMetadata:
"""策略3完全由LLM生成原有流程"""
# 复用现有的LLM enhancer
code_snippet = self._get_symbol_code(file_data.content, symbol)
results = self.llm_enhancer.enhance_files([
FileData(
path=f"{file_data.path}:{symbol.name}",
content=code_snippet,
language=file_data.language
)
])
return results.get(f"{file_data.path}:{symbol.name}", SemanticMetadata(
summary="",
keywords=[],
purpose="unknown",
file_path=file_data.path,
symbol_name=symbol.name,
llm_tool="hybrid_llm_full",
))
def _generate_keywords_only(self, summary: str, symbol_name: str) -> List[str]:
"""仅生成keywords快速LLM调用"""
prompt = f"""
PURPOSE: Generate search keywords for a code function
TASK: Extract 5-8 relevant keywords from the summary
Summary: {summary}
Function Name: {symbol_name}
OUTPUT: Comma-separated keywords
"""
response = self.llm_enhancer._invoke_ccw_cli(prompt, tool='gemini')
if response['success']:
keywords_str = response['stdout'].strip()
return [k.strip() for k in keywords_str.split(',')]
# Fallback: 从摘要提取关键词
return self._extract_keywords_heuristic(summary)
def _extract_keywords_heuristic(self, text: str) -> List[str]:
"""启发式关键词提取无需LLM"""
# 简单实现:提取名词性词组
import re
words = re.findall(r'\b[a-z]{4,}\b', text.lower())
# 过滤常见词
stopwords = {'this', 'that', 'with', 'from', 'have', 'will', 'your', 'their'}
keywords = [w for w in words if w not in stopwords]
return list(set(keywords))[:8]
def _infer_purpose_from_docstring(self, doc_metadata: DocstringMetadata) -> str:
"""从docstring推断purpose无需LLM"""
summary = doc_metadata.summary.lower()
# 简单规则匹配
if 'authenticate' in summary or 'login' in summary:
return 'auth'
elif 'validate' in summary or 'check' in summary:
return 'validation'
elif 'parse' in summary or 'format' in summary:
return 'data_processing'
elif 'api' in summary or 'endpoint' in summary:
return 'api'
elif 'database' in summary or 'query' in summary:
return 'data'
elif 'test' in summary:
return 'test'
return 'util'
def _get_symbol_code(self, content: str, symbol: Symbol) -> str:
"""提取符号的代码"""
lines = content.splitlines()
start, end = symbol.range
return '\n'.join(lines[start-1:end])
```
### 3.3 成本优化统计
```python
@dataclass
class EnhancementStats:
"""增强统计"""
total_symbols: int = 0
used_docstring_only: int = 0 # 只使用docstring
llm_keywords_only: int = 0 # LLM只生成keywords
llm_refined: int = 0 # LLM精炼docstring
llm_full_generation: int = 0 # LLM完全生成
total_llm_calls: int = 0
estimated_cost_savings: float = 0.0 # 相比全用LLM节省的成本
class CostOptimizedEnhancer(HybridEnhancer):
"""带成本统计的增强器"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.stats = EnhancementStats()
def enhance_with_strategy(
self,
file_data: FileData,
symbols: List[Symbol]
) -> Dict[str, SemanticMetadata]:
"""增强并统计成本"""
self.stats.total_symbols += len(symbols)
results = super().enhance_with_strategy(file_data, symbols)
# 统计各策略使用情况
for metadata in results.values():
if metadata.llm_tool == "hybrid_docstring_primary":
self.stats.used_docstring_only += 1
self.stats.llm_keywords_only += 1
self.stats.total_llm_calls += 1
elif metadata.llm_tool == "hybrid_llm_refined":
self.stats.llm_refined += 1
self.stats.total_llm_calls += 1
elif metadata.llm_tool == "hybrid_llm_full":
self.stats.llm_full_generation += 1
self.stats.total_llm_calls += 1
# 计算成本节省假设keywords-only调用成本为full的20%
keywords_only_savings = self.stats.llm_keywords_only * 0.8 # 节省80%
full_generation_count = self.stats.total_symbols - self.stats.llm_keywords_only
self.stats.estimated_cost_savings = keywords_only_savings / full_generation_count if full_generation_count > 0 else 0
return results
def print_stats(self):
"""打印统计信息"""
print("=== Enhancement Statistics ===")
print(f"Total Symbols: {self.stats.total_symbols}")
print(f"Used Docstring (with LLM keywords): {self.stats.used_docstring_only} ({self.stats.used_docstring_only/self.stats.total_symbols*100:.1f}%)")
print(f"LLM Refined Docstring: {self.stats.llm_refined} ({self.stats.llm_refined/self.stats.total_symbols*100:.1f}%)")
print(f"LLM Full Generation: {self.stats.llm_full_generation} ({self.stats.llm_full_generation/self.stats.total_symbols*100:.1f}%)")
print(f"Total LLM Calls: {self.stats.total_llm_calls}")
print(f"Estimated Cost Savings: {self.stats.estimated_cost_savings*100:.1f}%")
```
## 4. 配置选项
```python
@dataclass
class HybridEnhancementConfig:
"""混合增强配置"""
# 是否启用混合策略False则回退到全LLM模式
enable_hybrid: bool = True
# 质量阈值配置
use_docstring_threshold: DocstringQuality = DocstringQuality.HIGH
refine_docstring_threshold: DocstringQuality = DocstringQuality.MEDIUM
# 是否为高质量docstring生成keywords
generate_keywords_for_docstring: bool = True
# LLM配置
llm_tool: str = "gemini"
llm_timeout: int = 300000
# 成本优化
batch_size: int = 5 # 批量处理大小
skip_test_files: bool = True # 跳过测试文件通常docstring较少
# 调试选项
log_strategy_decisions: bool = False # 记录策略决策日志
```
## 5. 测试策略
### 5.1 单元测试
```python
import pytest
class TestDocstringExtractor:
"""测试docstring提取"""
def test_extract_google_style(self):
"""测试Google风格docstring提取"""
code = '''
def calculate_total(items, discount=0):
"""Calculate total price with optional discount.
This function processes a list of items and applies
a discount if specified.
Args:
items (list): List of item objects with price attribute.
discount (float): Discount percentage (0-1). Defaults to 0.
Returns:
float: Total price after discount.
Examples:
>>> calculate_total([item1, item2], discount=0.1)
90.0
"""
total = sum(item.price for item in items)
return total * (1 - discount)
'''
extractor = DocstringExtractor()
symbol = Symbol(name='calculate_total', kind='function', range=(1, 18))
docstring = extractor.extract_from_code(code, symbol)
assert docstring is not None
metadata = extractor.parse_docstring(docstring)
assert metadata.quality == DocstringQuality.HIGH
assert 'Calculate total price' in metadata.summary
assert metadata.parameters is not None
assert 'items' in metadata.parameters
assert metadata.returns is not None
assert metadata.examples is not None
def test_extract_low_quality_docstring(self):
"""测试低质量docstring识别"""
code = '''
def process():
"""TODO"""
pass
'''
extractor = DocstringExtractor()
symbol = Symbol(name='process', kind='function', range=(1, 3))
docstring = extractor.extract_from_code(code, symbol)
metadata = extractor.parse_docstring(docstring)
assert metadata.quality == DocstringQuality.LOW
class TestHybridEnhancer:
"""测试混合增强器"""
def test_high_quality_docstring_strategy(self):
"""测试高质量docstring使用策略"""
extractor = DocstringExtractor()
llm_enhancer = LLMEnhancer(LLMConfig(enabled=True))
hybrid = HybridEnhancer(llm_enhancer, extractor)
# 模拟高质量docstring
doc_metadata = DocstringMetadata(
raw_text="Validate user credentials against database.",
quality=DocstringQuality.HIGH,
summary="Validate user credentials against database."
)
symbol = Symbol(name='validate_user', kind='function', range=(1, 10))
result = hybrid._use_docstring_with_llm_keywords(symbol, doc_metadata)
# 应该使用docstring的摘要
assert result.summary == doc_metadata.summary
# 应该有keywords可能由LLM或启发式生成
assert len(result.keywords) > 0
def test_cost_optimization(self):
"""测试成本优化效果"""
enhancer = CostOptimizedEnhancer(
llm_enhancer=LLMEnhancer(LLMConfig(enabled=False)), # Mock
docstring_extractor=DocstringExtractor()
)
# 模拟处理10个symbol其中5个有高质量docstring
# 预期5个只调用keywords生成5个完整LLM
# 总调用10次但成本降低keywords调用更便宜
# 实际测试需要mock LLM调用
pass
```
### 5.2 集成测试
```python
class TestHybridEnhancementPipeline:
"""测试完整的混合增强流程"""
def test_full_pipeline(self):
"""测试完整流程:代码 -> docstring提取 -> 质量评估 -> 策略选择 -> 增强"""
code = '''
def authenticate_user(username, password):
"""Authenticate user with username and password.
Args:
username (str): User's username
password (str): User's password
Returns:
bool: True if authenticated, False otherwise
"""
# ... implementation
pass
def helper_func(x):
# No docstring
return x * 2
'''
file_data = FileData(path='auth.py', content=code, language='python')
symbols = [
Symbol(name='authenticate_user', kind='function', range=(1, 11)),
Symbol(name='helper_func', kind='function', range=(13, 15)),
]
extractor = DocstringExtractor()
llm_enhancer = LLMEnhancer(LLMConfig(enabled=True))
hybrid = CostOptimizedEnhancer(llm_enhancer, extractor)
results = hybrid.enhance_with_strategy(file_data, symbols)
# authenticate_user 应该使用docstring
assert results['authenticate_user'].llm_tool == "hybrid_docstring_primary"
# helper_func 应该完全LLM生成
assert results['helper_func'].llm_tool == "hybrid_llm_full"
# 统计
assert hybrid.stats.total_symbols == 2
assert hybrid.stats.used_docstring_only >= 1
assert hybrid.stats.llm_full_generation >= 1
```
## 6. 实施路线图
### Phase 1: 基础设施1周
- [x] 设计数据结构DocstringMetadata, DocstringQuality
- [ ] 实现DocstringExtractor提取和解析
- [ ] 支持Python docstringGoogle/NumPy/reStructuredText风格
- [ ] 单元测试
### Phase 2: 质量评估1周
- [ ] 实现质量评估算法
- [ ] 启发式规则优化
- [ ] 测试不同质量的docstring
- [ ] 调整阈值参数
### Phase 3: 混合策略1-2周
- [ ] 实现HybridEnhancer
- [ ] 三种策略实现docstring-only, refine, full-llm
- [ ] 策略选择逻辑
- [ ] 集成测试
### Phase 4: 成本优化1周
- [ ] 实现CostOptimizedEnhancer
- [ ] 统计和监控
- [ ] 批量处理优化
- [ ] 性能测试
### Phase 5: 多语言支持1-2周
- [ ] JavaScript/TypeScript JSDoc
- [ ] Java Javadoc
- [ ] 其他语言docstring格式
### Phase 6: 集成与部署1周
- [ ] 集成到现有llm_enhancer
- [ ] CLI选项暴露
- [ ] 配置文件支持
- [ ] 文档和示例
**总计预估时间**6-8周
## 7. 性能与成本分析
### 7.1 预期成本节省
假设场景分析1000个函数
| Docstring质量分布 | 占比 | LLM调用策略 | 相对成本 |
|------------------|------|------------|---------|
| High (有详细docstring) | 30% | 只生成keywords | 20% |
| Medium (有基本docstring) | 40% | 精炼增强 | 60% |
| Low/Missing | 30% | 完全生成 | 100% |
**总成本计算**
- 纯LLM模式1000 * 100% = 1000 units
- 混合模式300*20% + 400*60% + 300*100% = 60 + 240 + 300 = 600 units
- **节省**40%
### 7.2 质量对比
| 指标 | 纯LLM模式 | 混合模式 |
|------|----------|---------|
| 准确性 | 中(可能有幻觉) | **高**docstring权威 |
| 一致性 | 中依赖prompt | **高**(保留作者风格) |
| 覆盖率 | **高**(全覆盖) | 高98%+ |
| 成本 | 高 | **低**节省40% |
| 速度 | 慢(所有文件) | **快**减少LLM调用 |
## 8. 潜在问题与解决方案
### 8.1 问题Docstring过时
**现象**代码已修改但docstring未更新导致信息不准确。
**解决方案**
```python
class DocstringFreshnessChecker:
"""检查docstring与代码的一致性"""
def check_freshness(
self,
symbol: Symbol,
code: str,
doc_metadata: DocstringMetadata
) -> bool:
"""检查docstring是否与代码匹配"""
# 检查1: 参数列表是否匹配
if doc_metadata.parameters:
actual_params = self._extract_actual_parameters(code)
documented_params = set(doc_metadata.parameters.keys())
if actual_params != documented_params:
logger.warning(
f"Parameter mismatch in {symbol.name}: "
f"code has {actual_params}, doc has {documented_params}"
)
return False
# 检查2: 使用LLM验证一致性
# TODO: 构建验证prompt
return True
```
### 8.2 问题不同docstring风格混用
**现象**同一项目中使用多种docstring风格Google, NumPy, 自定义)。
**解决方案**
```python
class MultiStyleDocstringParser:
"""支持多种docstring风格的解析器"""
def parse(self, docstring: str) -> DocstringMetadata:
"""自动检测并解析不同风格"""
# 尝试各种解析器
for parser in [
GoogleStyleParser(),
NumpyStyleParser(),
ReStructuredTextParser(),
SimpleParser(), # Fallback
]:
try:
metadata = parser.parse(docstring)
if metadata.quality != DocstringQuality.LOW:
return metadata
except Exception:
continue
# 如果所有解析器都失败,返回简单解析结果
return SimpleParser().parse(docstring)
```
### 8.3 问题多语言docstring提取差异
**现象**不同语言的docstring格式和位置不同。
**解决方案**
```python
class LanguageSpecificExtractor:
"""语言特定的docstring提取器"""
def extract(self, language: str, code: str, symbol: Symbol) -> Optional[str]:
"""根据语言选择合适的提取器"""
extractors = {
'python': PythonDocstringExtractor(),
'javascript': JSDocExtractor(),
'typescript': TSDocExtractor(),
'java': JavadocExtractor(),
}
extractor = extractors.get(language, GenericExtractor())
return extractor.extract(code, symbol)
class JSDocExtractor:
"""JavaScript/TypeScript JSDoc提取器"""
def extract(self, code: str, symbol: Symbol) -> Optional[str]:
"""提取JSDoc注释"""
lines = code.splitlines()
start_line = symbol.range[0] - 1
# 向上查找 /** ... */ 注释
for i in range(start_line - 1, max(0, start_line - 20), -1):
if '*/' in lines[i]:
# 找到结束标记,向上提取
return self._extract_jsdoc_block(lines, i)
return None
```
## 9. 配置示例
### 9.1 配置文件
```yaml
# .codexlens/hybrid_enhancement.yaml
hybrid_enhancement:
enabled: true
# 质量阈值
quality_thresholds:
use_docstring: high # high/medium/low
refine_docstring: medium
# LLM选项
llm:
tool: gemini
fallback: qwen
timeout_ms: 300000
batch_size: 5
# 成本优化
cost_optimization:
generate_keywords_for_docstring: true
skip_test_files: true
skip_private_methods: false
# 语言支持
languages:
python:
styles: [google, numpy, sphinx]
javascript:
styles: [jsdoc]
java:
styles: [javadoc]
# 监控
logging:
log_strategy_decisions: false
log_cost_savings: true
```
### 9.2 CLI使用
```bash
# 使用混合策略增强
codex-lens enhance . --hybrid --tool gemini
# 查看成本统计
codex-lens enhance . --hybrid --show-stats
# 仅对高质量docstring生成keywords
codex-lens enhance . --hybrid --keywords-only
# 禁用混合模式回退到纯LLM
codex-lens enhance . --no-hybrid --tool gemini
```
## 10. 成功指标
1. **成本节省**相比纯LLM模式降低API调用成本40%+
2. **准确性提升**使用docstring的符号元数据准确率>95%
3. **覆盖率**98%+的符号有语义元数据docstring或LLM生成
4. **速度提升**整体处理速度提升30%+减少LLM调用
5. **用户满意度**保留docstring信息开发者认可度高
## 11. 参考资料
- [PEP 257 - Docstring Conventions](https://peps.python.org/pep-0257/)
- [Google Python Style Guide - Docstrings](https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings)
- [NumPy Docstring Standard](https://numpydoc.readthedocs.io/en/latest/format.html)
- [JSDoc Documentation](https://jsdoc.app/)
- [Javadoc Tool](https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html)

View File

@@ -0,0 +1,973 @@
# 多层次分词器设计方案
## 1. 背景与目标
### 1.1 当前问题
当前 `chunker.py` 的两种分词策略存在明显缺陷:
**symbol-based 策略**
- ✅ 优点保持代码逻辑完整性每个chunk是完整的函数/类
- ❌ 缺点粒度不均超大函数可能达到数百行影响LLM处理和搜索精度
**sliding-window 策略**
- ✅ 优点chunk大小均匀覆盖全面
- ❌ 缺点:破坏逻辑结构,可能将完整的循环/条件块切断
### 1.2 设计目标
实现多层次分词器,同时满足:
1. **语义完整性**:保持代码逻辑边界的完整性
2. **粒度可控**:支持从粗粒度(函数级)到细粒度(逻辑块级)的灵活划分
3. **层级关系**保留chunk之间的父子关系支持上下文检索
4. **高效索引**:优化向量化和检索性能
## 2. 技术架构
### 2.1 两层分词架构
```
Source Code
[Layer 1: Symbol-Level Chunking] ← 使用 tree-sitter AST
MacroChunks (Functions/Classes)
[Layer 2: Logic-Block Chunking] ← AST深度遍历
MicroChunks (Loops/Conditionals/Blocks)
Vector Embedding + Indexing
```
### 2.2 核心组件
```python
# 新增数据结构
@dataclass
class ChunkMetadata:
"""Chunk元数据"""
chunk_id: str
parent_id: Optional[str] # 父chunk ID
level: int # 层级1=macro, 2=micro
chunk_type: str # function/class/loop/conditional/try_except
file_path: str
start_line: int
end_line: int
symbol_name: Optional[str]
context_summary: Optional[str] # 继承自父chunk的上下文
@dataclass
class HierarchicalChunk:
"""层级化的代码块"""
metadata: ChunkMetadata
content: str
embedding: Optional[List[float]] = None
children: List['HierarchicalChunk'] = field(default_factory=list)
```
## 3. 详细实现步骤
### 3.1 第一层符号级分词Macro-Chunking
**实现思路**:复用现有 `code_extractor.py` 逻辑,增强元数据提取。
```python
class MacroChunker:
"""第一层分词器:提取顶层符号"""
def __init__(self):
self.parser = Parser()
# 加载语言grammar
def chunk_by_symbols(
self,
content: str,
file_path: str,
language: str
) -> List[HierarchicalChunk]:
"""提取顶层函数和类定义"""
tree = self.parser.parse(bytes(content, 'utf-8'))
root_node = tree.root_node
chunks = []
for node in root_node.children:
if node.type in ['function_definition', 'class_definition',
'method_definition']:
chunk = self._create_macro_chunk(node, content, file_path)
chunks.append(chunk)
return chunks
def _create_macro_chunk(
self,
node,
content: str,
file_path: str
) -> HierarchicalChunk:
"""从AST节点创建macro chunk"""
start_line = node.start_point[0] + 1
end_line = node.end_point[0] + 1
# 提取符号名称
name_node = node.child_by_field_name('name')
symbol_name = content[name_node.start_byte:name_node.end_byte]
# 提取完整代码包含docstring和装饰器
chunk_content = self._extract_with_context(node, content)
metadata = ChunkMetadata(
chunk_id=f"{file_path}:{start_line}",
parent_id=None,
level=1,
chunk_type=node.type,
file_path=file_path,
start_line=start_line,
end_line=end_line,
symbol_name=symbol_name,
)
return HierarchicalChunk(
metadata=metadata,
content=chunk_content,
)
def _extract_with_context(self, node, content: str) -> str:
"""提取代码包含装饰器和docstring"""
# 向上查找装饰器
start_byte = node.start_byte
prev_sibling = node.prev_sibling
while prev_sibling and prev_sibling.type == 'decorator':
start_byte = prev_sibling.start_byte
prev_sibling = prev_sibling.prev_sibling
return content[start_byte:node.end_byte]
```
### 3.2 第二层逻辑块分词Micro-Chunking
**实现思路**在每个macro chunk内部按逻辑结构进一步划分。
```python
class MicroChunker:
"""第二层分词器:提取逻辑块"""
# 需要划分的逻辑块类型
LOGIC_BLOCK_TYPES = {
'for_statement',
'while_statement',
'if_statement',
'try_statement',
'with_statement',
}
def chunk_logic_blocks(
self,
macro_chunk: HierarchicalChunk,
content: str,
max_lines: int = 50 # 大于此行数的macro chunk才进行二次划分
) -> List[HierarchicalChunk]:
"""在macro chunk内部提取逻辑块"""
# 小函数不需要二次划分
total_lines = macro_chunk.metadata.end_line - macro_chunk.metadata.start_line
if total_lines <= max_lines:
return []
tree = self.parser.parse(bytes(macro_chunk.content, 'utf-8'))
root_node = tree.root_node
micro_chunks = []
self._traverse_logic_blocks(
root_node,
macro_chunk,
content,
micro_chunks
)
return micro_chunks
def _traverse_logic_blocks(
self,
node,
parent_chunk: HierarchicalChunk,
content: str,
result: List[HierarchicalChunk]
):
"""递归遍历AST提取逻辑块"""
if node.type in self.LOGIC_BLOCK_TYPES:
micro_chunk = self._create_micro_chunk(
node,
parent_chunk,
content
)
result.append(micro_chunk)
parent_chunk.children.append(micro_chunk)
# 继续遍历子节点
for child in node.children:
self._traverse_logic_blocks(child, parent_chunk, content, result)
def _create_micro_chunk(
self,
node,
parent_chunk: HierarchicalChunk,
content: str
) -> HierarchicalChunk:
"""创建micro chunk"""
# 计算相对于文件的行号
start_line = parent_chunk.metadata.start_line + node.start_point[0]
end_line = parent_chunk.metadata.start_line + node.end_point[0]
chunk_content = content[node.start_byte:node.end_byte]
metadata = ChunkMetadata(
chunk_id=f"{parent_chunk.metadata.chunk_id}:L{start_line}",
parent_id=parent_chunk.metadata.chunk_id,
level=2,
chunk_type=node.type,
file_path=parent_chunk.metadata.file_path,
start_line=start_line,
end_line=end_line,
symbol_name=parent_chunk.metadata.symbol_name, # 继承父符号名
context_summary=None, # 后续由LLM填充
)
return HierarchicalChunk(
metadata=metadata,
content=chunk_content,
)
```
### 3.3 统一接口:多层次分词器
```python
class HierarchicalChunker:
"""多层次分词器统一接口"""
def __init__(self, config: ChunkConfig = None):
self.config = config or ChunkConfig()
self.macro_chunker = MacroChunker()
self.micro_chunker = MicroChunker()
def chunk_file(
self,
content: str,
file_path: str,
language: str
) -> List[HierarchicalChunk]:
"""对文件进行多层次分词"""
# 第一层:符号级分词
macro_chunks = self.macro_chunker.chunk_by_symbols(
content, file_path, language
)
# 第二层:逻辑块分词
all_chunks = []
for macro_chunk in macro_chunks:
all_chunks.append(macro_chunk)
# 对大函数进行二次划分
micro_chunks = self.micro_chunker.chunk_logic_blocks(
macro_chunk, content
)
all_chunks.extend(micro_chunks)
return all_chunks
def chunk_file_with_fallback(
self,
content: str,
file_path: str,
language: str
) -> List[HierarchicalChunk]:
"""带降级策略的分词"""
try:
return self.chunk_file(content, file_path, language)
except Exception as e:
logger.warning(f"Hierarchical chunking failed: {e}, falling back to sliding window")
# 降级到滑动窗口策略
return self._fallback_sliding_window(content, file_path, language)
```
## 4. 数据存储设计
### 4.1 数据库Schema
```sql
-- chunk表存储所有层级的chunk
CREATE TABLE chunks (
chunk_id TEXT PRIMARY KEY,
parent_id TEXT, -- 父chunk IDNULL表示顶层
level INTEGER NOT NULL, -- 1=macro, 2=micro
chunk_type TEXT NOT NULL, -- function/class/loop/if/try等
file_path TEXT NOT NULL,
start_line INTEGER NOT NULL,
end_line INTEGER NOT NULL,
symbol_name TEXT,
content TEXT NOT NULL,
content_hash TEXT, -- 用于检测内容变化
-- 语义元数据由LLM生成
summary TEXT,
keywords TEXT, -- JSON数组
purpose TEXT,
-- 向量嵌入
embedding BLOB, -- 存储向量
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (parent_id) REFERENCES chunks(chunk_id) ON DELETE CASCADE
);
-- 索引优化
CREATE INDEX idx_chunks_file_path ON chunks(file_path);
CREATE INDEX idx_chunks_parent_id ON chunks(parent_id);
CREATE INDEX idx_chunks_level ON chunks(level);
CREATE INDEX idx_chunks_symbol_name ON chunks(symbol_name);
```
### 4.2 向量索引
使用分层索引策略:
```python
class HierarchicalVectorStore:
"""层级化向量存储"""
def __init__(self, db_path: Path):
self.db_path = db_path
self.conn = sqlite3.connect(db_path)
def add_chunk(self, chunk: HierarchicalChunk):
"""添加chunk及其向量"""
cursor = self.conn.cursor()
cursor.execute("""
INSERT INTO chunks (
chunk_id, parent_id, level, chunk_type,
file_path, start_line, end_line, symbol_name,
content, embedding
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
chunk.metadata.chunk_id,
chunk.metadata.parent_id,
chunk.metadata.level,
chunk.metadata.chunk_type,
chunk.metadata.file_path,
chunk.metadata.start_line,
chunk.metadata.end_line,
chunk.metadata.symbol_name,
chunk.content,
self._serialize_embedding(chunk.embedding),
))
self.conn.commit()
def search_hierarchical(
self,
query_embedding: List[float],
top_k: int = 10,
level_weights: Dict[int, float] = None
) -> List[Tuple[HierarchicalChunk, float]]:
"""层级化检索"""
# 默认权重macro chunk权重更高
if level_weights is None:
level_weights = {1: 1.0, 2: 0.8}
# 检索所有chunk
cursor = self.conn.cursor()
cursor.execute("SELECT * FROM chunks WHERE embedding IS NOT NULL")
results = []
for row in cursor.fetchall():
chunk = self._row_to_chunk(row)
similarity = self._cosine_similarity(
query_embedding,
chunk.embedding
)
# 根据层级应用权重
weighted_score = similarity * level_weights.get(chunk.metadata.level, 1.0)
results.append((chunk, weighted_score))
# 按分数排序
results.sort(key=lambda x: x[1], reverse=True)
return results[:top_k]
def get_chunk_with_context(
self,
chunk_id: str
) -> Tuple[HierarchicalChunk, Optional[HierarchicalChunk]]:
"""获取chunk及其父chunk提供上下文"""
cursor = self.conn.cursor()
# 获取chunk本身
cursor.execute("SELECT * FROM chunks WHERE chunk_id = ?", (chunk_id,))
chunk_row = cursor.fetchone()
chunk = self._row_to_chunk(chunk_row)
# 获取父chunk
parent = None
if chunk.metadata.parent_id:
cursor.execute(
"SELECT * FROM chunks WHERE chunk_id = ?",
(chunk.metadata.parent_id,)
)
parent_row = cursor.fetchone()
if parent_row:
parent = self._row_to_chunk(parent_row)
return chunk, parent
```
## 5. LLM集成策略
### 5.1 分层生成语义元数据
```python
class HierarchicalLLMEnhancer:
"""为层级chunk生成语义元数据"""
def enhance_hierarchical_chunks(
self,
chunks: List[HierarchicalChunk]
) -> Dict[str, SemanticMetadata]:
"""
分层处理策略:
1. 先处理所有level=1的macro chunks生成详细摘要
2. 再处理level=2的micro chunks使用父chunk摘要作为上下文
"""
results = {}
# 第一轮处理macro chunks
macro_chunks = [c for c in chunks if c.metadata.level == 1]
macro_metadata = self.llm_enhancer.enhance_files([
FileData(
path=c.metadata.chunk_id,
content=c.content,
language=self._detect_language(c.metadata.file_path)
)
for c in macro_chunks
])
results.update(macro_metadata)
# 第二轮处理micro chunks带父上下文
micro_chunks = [c for c in chunks if c.metadata.level == 2]
for micro_chunk in micro_chunks:
parent_id = micro_chunk.metadata.parent_id
parent_summary = macro_metadata.get(parent_id, {}).get('summary', '')
# 构建带上下文的prompt
enhanced_prompt = f"""
Parent Function: {micro_chunk.metadata.symbol_name}
Parent Summary: {parent_summary}
Code Block ({micro_chunk.metadata.chunk_type}):
```
{micro_chunk.content}
```
Generate a concise summary (1 sentence) and keywords for this specific code block.
"""
metadata = self._call_llm_with_context(enhanced_prompt)
results[micro_chunk.metadata.chunk_id] = metadata
return results
```
### 5.2 Prompt优化
针对不同层级使用不同的prompt模板
**Macro Chunk Prompt (Level 1)**:
```
PURPOSE: Generate comprehensive semantic metadata for a complete function/class
TASK:
- Provide a detailed summary (2-3 sentences) covering what the code does and why
- Extract 8-12 relevant keywords including technical terms and domain concepts
- Identify the primary purpose/category
MODE: analysis
CODE:
```{language}
{content}
```
OUTPUT: JSON with summary, keywords, purpose
```
**Micro Chunk Prompt (Level 2)**:
```
PURPOSE: Summarize a specific logic block within a larger function
CONTEXT:
- Parent Function: {symbol_name}
- Parent Purpose: {parent_summary}
TASK:
- Provide a brief summary (1 sentence) of this specific block's role in the parent function
- Extract 3-5 keywords specific to this block's logic
MODE: analysis
CODE BLOCK ({chunk_type}):
```{language}
{content}
```
OUTPUT: JSON with summary, keywords
```
## 6. 检索增强
### 6.1 上下文扩展检索
```python
class ContextualSearchEngine:
"""支持上下文扩展的检索引擎"""
def search_with_context(
self,
query: str,
top_k: int = 10,
expand_context: bool = True
) -> List[SearchResult]:
"""
检索并自动扩展上下文
如果匹配到micro chunk自动返回其父macro chunk作为上下文
"""
# 生成查询向量
query_embedding = self.embedder.embed_single(query)
# 层级化检索
raw_results = self.vector_store.search_hierarchical(
query_embedding,
top_k=top_k
)
# 扩展上下文
enriched_results = []
for chunk, score in raw_results:
result = SearchResult(
path=chunk.metadata.file_path,
score=score,
content=chunk.content,
start_line=chunk.metadata.start_line,
end_line=chunk.metadata.end_line,
symbol_name=chunk.metadata.symbol_name,
)
# 如果是micro chunk获取父chunk作为上下文
if expand_context and chunk.metadata.level == 2:
parent_chunk, _ = self.vector_store.get_chunk_with_context(
chunk.metadata.chunk_id
)
if parent_chunk:
result.metadata['parent_context'] = {
'summary': parent_chunk.metadata.context_summary,
'symbol_name': parent_chunk.metadata.symbol_name,
'content': parent_chunk.content,
}
enriched_results.append(result)
return enriched_results
```
## 7. 测试策略
### 7.1 单元测试
```python
import pytest
from codexlens.semantic.hierarchical_chunker import (
HierarchicalChunker, MacroChunker, MicroChunker
)
class TestMacroChunker:
"""测试第一层分词"""
def test_extract_functions(self):
"""测试提取函数定义"""
code = '''
def calculate_total(items):
"""Calculate total price."""
total = 0
for item in items:
total += item.price
return total
def apply_discount(total, discount):
"""Apply discount to total."""
return total * (1 - discount)
'''
chunker = MacroChunker()
chunks = chunker.chunk_by_symbols(code, 'test.py', 'python')
assert len(chunks) == 2
assert chunks[0].metadata.symbol_name == 'calculate_total'
assert chunks[1].metadata.symbol_name == 'apply_discount'
assert chunks[0].metadata.level == 1
def test_extract_with_decorators(self):
"""测试提取带装饰器的函数"""
code = '''
@app.route('/api/users')
@auth_required
def get_users():
return User.query.all()
'''
chunker = MacroChunker()
chunks = chunker.chunk_by_symbols(code, 'test.py', 'python')
assert len(chunks) == 1
assert '@app.route' in chunks[0].content
assert '@auth_required' in chunks[0].content
class TestMicroChunker:
"""测试第二层分词"""
def test_extract_loop_blocks(self):
"""测试提取循环块"""
code = '''
def process_items(items):
results = []
for item in items:
if item.active:
results.append(process(item))
return results
'''
macro_chunker = MacroChunker()
macro_chunks = macro_chunker.chunk_by_symbols(code, 'test.py', 'python')
micro_chunker = MicroChunker()
micro_chunks = micro_chunker.chunk_logic_blocks(
macro_chunks[0], code
)
# 应该提取出for循环和if条件块
assert len(micro_chunks) >= 1
assert any(c.metadata.chunk_type == 'for_statement' for c in micro_chunks)
def test_skip_small_functions(self):
"""测试小函数跳过二次划分"""
code = '''
def small_func(x):
return x * 2
'''
macro_chunker = MacroChunker()
macro_chunks = macro_chunker.chunk_by_symbols(code, 'test.py', 'python')
micro_chunker = MicroChunker()
micro_chunks = micro_chunker.chunk_logic_blocks(
macro_chunks[0], code, max_lines=10
)
# 小函数不应该被二次划分
assert len(micro_chunks) == 0
class TestHierarchicalChunker:
"""测试完整的多层次分词"""
def test_full_hierarchical_chunking(self):
"""测试完整的层级分词流程"""
code = '''
def complex_function(data):
"""A complex function with multiple logic blocks."""
# Validation
if not data:
raise ValueError("Data is empty")
# Processing
results = []
for item in data:
try:
processed = process_item(item)
results.append(processed)
except Exception as e:
logger.error(f"Failed to process: {e}")
continue
# Aggregation
total = sum(r.value for r in results)
return total
'''
chunker = HierarchicalChunker()
chunks = chunker.chunk_file(code, 'test.py', 'python')
# 应该有1个macro chunk和多个micro chunks
macro_chunks = [c for c in chunks if c.metadata.level == 1]
micro_chunks = [c for c in chunks if c.metadata.level == 2]
assert len(macro_chunks) == 1
assert len(micro_chunks) > 0
# 验证父子关系
for micro in micro_chunks:
assert micro.metadata.parent_id == macro_chunks[0].metadata.chunk_id
```
### 7.2 集成测试
```python
class TestHierarchicalIndexing:
"""测试完整的索引流程"""
def test_index_and_search(self):
"""测试分层索引和检索"""
# 1. 分词
chunker = HierarchicalChunker()
chunks = chunker.chunk_file(sample_code, 'sample.py', 'python')
# 2. LLM增强
enhancer = HierarchicalLLMEnhancer()
metadata = enhancer.enhance_hierarchical_chunks(chunks)
# 3. 向量化
embedder = Embedder()
for chunk in chunks:
text = metadata[chunk.metadata.chunk_id].summary
chunk.embedding = embedder.embed_single(text)
# 4. 存储
vector_store = HierarchicalVectorStore(Path('/tmp/test.db'))
for chunk in chunks:
vector_store.add_chunk(chunk)
# 5. 检索
search_engine = ContextualSearchEngine(vector_store, embedder)
results = search_engine.search_with_context(
"find loop that processes items",
top_k=5
)
# 验证结果
assert len(results) > 0
assert any(r.metadata.get('parent_context') for r in results)
```
## 8. 性能优化
### 8.1 批量处理
```python
class BatchHierarchicalProcessor:
"""批量处理多个文件的层级分词"""
def process_files_batch(
self,
file_paths: List[Path],
batch_size: int = 10
):
"""批量处理优化LLM调用"""
all_chunks = []
# 1. 批量分词
for file_path in file_paths:
content = file_path.read_text()
chunks = self.chunker.chunk_file(
content, str(file_path), self._detect_language(file_path)
)
all_chunks.extend(chunks)
# 2. 批量LLM增强减少API调用
macro_chunks = [c for c in all_chunks if c.metadata.level == 1]
for i in range(0, len(macro_chunks), batch_size):
batch = macro_chunks[i:i+batch_size]
self.enhancer.enhance_batch(batch)
# 3. 批量向量化
all_texts = [c.content for c in all_chunks]
embeddings = self.embedder.embed_batch(all_texts)
for chunk, embedding in zip(all_chunks, embeddings):
chunk.embedding = embedding
# 4. 批量存储
self.vector_store.add_chunks_batch(all_chunks)
```
### 8.2 增量更新
```python
class IncrementalIndexer:
"""增量索引器:只处理变化的文件"""
def update_file(self, file_path: Path):
"""增量更新单个文件"""
content = file_path.read_text()
content_hash = hashlib.sha256(content.encode()).hexdigest()
# 检查文件是否变化
cursor = self.conn.cursor()
cursor.execute("""
SELECT content_hash FROM chunks
WHERE file_path = ? AND level = 1
LIMIT 1
""", (str(file_path),))
row = cursor.fetchone()
if row and row[0] == content_hash:
logger.info(f"File {file_path} unchanged, skipping")
return
# 删除旧chunk
cursor.execute("DELETE FROM chunks WHERE file_path = ?", (str(file_path),))
# 重新索引
chunks = self.chunker.chunk_file(content, str(file_path), 'python')
# ... 继续处理
```
## 9. 潜在问题与解决方案
### 9.1 问题超大函数的micro chunk过多
**现象**某些遗留代码函数超过1000行可能产生几十个micro chunks。
**解决方案**
```python
class AdaptiveMicroChunker:
"""自适应micro分词根据函数大小调整策略"""
def chunk_logic_blocks(self, macro_chunk, content):
total_lines = macro_chunk.metadata.end_line - macro_chunk.metadata.start_line
if total_lines > 500:
# 超大函数:只提取顶层逻辑块,不递归
return self._extract_top_level_blocks(macro_chunk, content)
elif total_lines > 100:
# 大函数递归深度限制为2层
return self._extract_blocks_with_depth_limit(macro_chunk, content, max_depth=2)
else:
# 正常函数完全跳过micro chunking
return []
```
### 9.2 问题tree-sitter解析失败
**现象**对于语法错误的代码tree-sitter解析可能失败。
**解决方案**
```python
def chunk_file_with_fallback(self, content, file_path, language):
"""带降级策略的分词"""
try:
# 尝试层级分词
return self.chunk_file(content, file_path, language)
except TreeSitterError as e:
logger.warning(f"Tree-sitter parsing failed: {e}")
# 降级到基于正则的简单symbol提取
return self._fallback_regex_chunking(content, file_path)
except Exception as e:
logger.error(f"Chunking failed completely: {e}")
# 最终降级到滑动窗口
return self._fallback_sliding_window(content, file_path, language)
```
### 9.3 问题:向量存储空间占用
**现象**每个chunk都存储向量空间占用可能很大。
**解决方案**
- **选择性向量化**只对macro chunks和重要的micro chunks生成向量
- **向量压缩**使用PCA或量化技术减少向量维度
- **分离存储**向量存储在专门的向量数据库如FaissSQLite只存元数据
```python
class SelectiveVectorization:
"""选择性向量化:减少存储开销"""
VECTORIZE_CHUNK_TYPES = {
'function_definition', # 总是向量化
'class_definition', # 总是向量化
'for_statement', # 循环块
'try_statement', # 异常处理
# 'if_statement' 通常不单独向量化依赖父chunk
}
def should_vectorize(self, chunk: HierarchicalChunk) -> bool:
"""判断是否需要为chunk生成向量"""
# Level 1总是向量化
if chunk.metadata.level == 1:
return True
# Level 2根据类型和大小决定
if chunk.metadata.chunk_type not in self.VECTORIZE_CHUNK_TYPES:
return False
# 太小的块(<5行不向量化
lines = chunk.metadata.end_line - chunk.metadata.start_line
if lines < 5:
return False
return True
```
## 10. 实施路线图
### Phase 1: 基础架构2-3周
- [x] 设计数据结构HierarchicalChunk, ChunkMetadata
- [ ] 实现MacroChunker复用现有code_extractor
- [ ] 实现基础的MicroChunker
- [ ] 数据库schema设计和migration
- [ ] 单元测试
### Phase 2: LLM集成1-2周
- [ ] 实现HierarchicalLLMEnhancer
- [ ] 设计分层prompt模板
- [ ] 批量处理优化
- [ ] 集成测试
### Phase 3: 向量化与检索1-2周
- [ ] 实现HierarchicalVectorStore
- [ ] 实现ContextualSearchEngine
- [ ] 上下文扩展逻辑
- [ ] 检索性能测试
### Phase 4: 优化与完善2周
- [ ] 性能优化(批量处理、增量更新)
- [ ] 降级策略完善
- [ ] 选择性向量化
- [ ] 全面测试和文档
### Phase 5: 生产部署1周
- [ ] CLI集成
- [ ] 配置选项暴露
- [ ] 生产环境测试
- [ ] 发布
**总计预估时间**7-10周
## 11. 成功指标
1. **覆盖率**95%以上的代码能被正确分词
2. **准确率**:层级关系准确率>98%
3. **检索质量**相比单层分词检索相关性提升30%+
4. **性能**:单文件分词<100ms批量处理>100文件/分钟
5. **存储效率**相比全向量化空间占用减少40%+
## 12. 参考资料
- [Tree-sitter Documentation](https://tree-sitter.github.io/)
- [AST-based Code Analysis](https://en.wikipedia.org/wiki/Abstract_syntax_tree)
- [Hierarchical Text Segmentation](https://arxiv.org/abs/2104.08836)
- 现有代码:`src/codexlens/semantic/chunker.py`

File diff suppressed because it is too large Load Diff