feat: Add method to retrieve all semantic chunks from the vector store

- Implemented `get_all_chunks` method in `VectorStore` class to fetch all semantic chunks from the database.
- Added a new benchmark script `analyze_methods.py` for analyzing hybrid search methods and storage architecture.
- Included detailed analysis of method contributions, storage conflicts, and FTS + Rerank fusion experiments.
- Updated results JSON structure to reflect new analysis outputs and method performance metrics.
This commit is contained in:
catlog22
2026-01-02 12:32:43 +08:00
parent 9129c981a4
commit 56c03c847a
4 changed files with 1256 additions and 0 deletions

View File

@@ -0,0 +1,281 @@
"""Analyze hybrid search methods contribution."""
import json
import sqlite3
import time
from pathlib import Path
from collections import defaultdict
import sys
sys.path.insert(0, str(Path(__file__).parent.parent / "src"))
from codexlens.search.hybrid_search import HybridSearchEngine
from codexlens.search.ranking import (
reciprocal_rank_fusion,
cross_encoder_rerank,
DEFAULT_WEIGHTS,
FTS_FALLBACK_WEIGHTS,
)
# Use index with most data
index_path = Path(r"C:\Users\dyw\.codexlens\indexes\D\Claude_dms3\codex-lens\src\codexlens\storage\_index.db")
print("=" * 60)
print("1. STORAGE ARCHITECTURE ANALYSIS")
print("=" * 60)
# Analyze storage
with sqlite3.connect(index_path) as conn:
cursor = conn.execute(
"SELECT name FROM sqlite_master WHERE type='table' ORDER BY name"
)
tables = [row[0] for row in cursor.fetchall()]
print("\nTable Overview:")
for table in tables:
try:
count = conn.execute(f"SELECT COUNT(*) FROM {table}").fetchone()[0]
if count > 0:
print(f" {table}: {count} rows")
except:
pass
print("\n--- Conflict Analysis ---")
chunks_count = 0
semantic_count = 0
if "chunks" in tables:
chunks_count = conn.execute("SELECT COUNT(*) FROM chunks").fetchone()[0]
if "semantic_chunks" in tables:
semantic_count = conn.execute("SELECT COUNT(*) FROM semantic_chunks").fetchone()[0]
print(f" chunks table: {chunks_count} rows")
print(f" semantic_chunks table: {semantic_count} rows")
if semantic_count > 0:
col_info = conn.execute("PRAGMA table_info(semantic_chunks)").fetchall()
col_names = [c[1] for c in col_info]
print(f"\n semantic_chunks columns: {col_names}")
for col in ["embedding", "embedding_binary", "embedding_dense"]:
if col in col_names:
null_count = conn.execute(
f"SELECT COUNT(*) FROM semantic_chunks WHERE {col} IS NULL"
).fetchone()[0]
non_null = semantic_count - null_count
print(f" {col}: {non_null}/{semantic_count} non-null")
if "splade_posting_list" in tables:
splade_count = conn.execute("SELECT COUNT(*) FROM splade_posting_list").fetchone()[0]
print(f"\n splade_posting_list: {splade_count} postings")
else:
print("\n splade_posting_list: NOT EXISTS")
print("\n" + "=" * 60)
print("2. METHOD CONTRIBUTION ANALYSIS")
print("=" * 60)
queries = [
"database connection",
"create table",
"sqlite store",
"migration",
"search chunks",
]
results_summary = {
"fts_exact": [],
"fts_fuzzy": [],
"vector": [],
"splade": [],
}
for query in queries:
print(f"\nQuery: '{query}'")
# FTS Exact
try:
engine = HybridSearchEngine(weights=FTS_FALLBACK_WEIGHTS)
engine._config = type("obj", (object,), {
"use_fts_fallback": True,
"enable_splade": False,
"embedding_use_gpu": True,
"symbol_boost_factor": 1.5,
"enable_reranking": False,
})()
start = time.perf_counter()
results = engine.search(index_path, query, limit=10, enable_fuzzy=False, enable_vector=False)
latency = (time.perf_counter() - start) * 1000
results_summary["fts_exact"].append({"count": len(results), "latency": latency})
top_file = results[0].path.split("\\")[-1] if results else "N/A"
top_score = results[0].score if results else 0
print(f" FTS Exact: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
except Exception as e:
print(f" FTS Exact: ERROR - {e}")
# FTS Fuzzy
try:
engine = HybridSearchEngine(weights=FTS_FALLBACK_WEIGHTS)
engine._config = type("obj", (object,), {
"use_fts_fallback": True,
"enable_splade": False,
"embedding_use_gpu": True,
"symbol_boost_factor": 1.5,
"enable_reranking": False,
})()
start = time.perf_counter()
results = engine.search(index_path, query, limit=10, enable_fuzzy=True, enable_vector=False)
latency = (time.perf_counter() - start) * 1000
results_summary["fts_fuzzy"].append({"count": len(results), "latency": latency})
top_file = results[0].path.split("\\")[-1] if results else "N/A"
top_score = results[0].score if results else 0
print(f" FTS Fuzzy: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
except Exception as e:
print(f" FTS Fuzzy: ERROR - {e}")
# Vector
try:
engine = HybridSearchEngine()
engine._config = type("obj", (object,), {
"use_fts_fallback": False,
"enable_splade": False,
"embedding_use_gpu": True,
"symbol_boost_factor": 1.5,
"enable_reranking": False,
})()
start = time.perf_counter()
results = engine.search(index_path, query, limit=10, enable_vector=True, pure_vector=True)
latency = (time.perf_counter() - start) * 1000
results_summary["vector"].append({"count": len(results), "latency": latency})
top_file = results[0].path.split("\\")[-1] if results else "N/A"
top_score = results[0].score if results else 0
print(f" Vector: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
except Exception as e:
print(f" Vector: ERROR - {e}")
# SPLADE
try:
engine = HybridSearchEngine(weights={"splade": 1.0})
engine._config = type("obj", (object,), {
"use_fts_fallback": False,
"enable_splade": True,
"embedding_use_gpu": True,
"symbol_boost_factor": 1.5,
"enable_reranking": False,
})()
start = time.perf_counter()
results = engine.search(index_path, query, limit=10, enable_fuzzy=False, enable_vector=False)
latency = (time.perf_counter() - start) * 1000
results_summary["splade"].append({"count": len(results), "latency": latency})
top_file = results[0].path.split("\\")[-1] if results else "N/A"
top_score = results[0].score if results else 0
print(f" SPLADE: {len(results)} results, {latency:.1f}ms, top: {top_file} ({top_score:.3f})")
except Exception as e:
print(f" SPLADE: ERROR - {e}")
print("\n--- Summary ---")
for method, data in results_summary.items():
if data:
avg_count = sum(d["count"] for d in data) / len(data)
avg_latency = sum(d["latency"] for d in data) / len(data)
print(f"{method}: avg {avg_count:.1f} results, {avg_latency:.1f}ms")
print("\n" + "=" * 60)
print("3. FTS + RERANK FUSION EXPERIMENT")
print("=" * 60)
# Initialize reranker
reranker = None
try:
from codexlens.semantic.reranker import get_reranker, check_reranker_available
ok, _ = check_reranker_available("onnx")
if ok:
reranker = get_reranker(backend="onnx", use_gpu=True)
print("\nReranker loaded: ONNX backend")
except Exception as e:
print(f"\nReranker unavailable: {e}")
test_queries = ["database connection", "create table migration"]
for query in test_queries:
print(f"\nQuery: '{query}'")
# Strategy 1: Standard Hybrid (FTS exact+fuzzy RRF)
try:
engine = HybridSearchEngine(weights=FTS_FALLBACK_WEIGHTS)
engine._config = type("obj", (object,), {
"use_fts_fallback": True,
"enable_splade": False,
"embedding_use_gpu": True,
"symbol_boost_factor": 1.5,
"enable_reranking": False,
})()
start = time.perf_counter()
standard_results = engine.search(index_path, query, limit=10, enable_fuzzy=True, enable_vector=False)
standard_latency = (time.perf_counter() - start) * 1000
print(f" Standard FTS RRF: {len(standard_results)} results, {standard_latency:.1f}ms")
for i, r in enumerate(standard_results[:3]):
print(f" {i+1}. {r.path.split(chr(92))[-1]} (score: {r.score:.4f})")
except Exception as e:
print(f" Standard FTS RRF: ERROR - {e}")
standard_results = []
# Strategy 2: FTS + CrossEncoder Rerank
if reranker and standard_results:
try:
start = time.perf_counter()
reranked_results = cross_encoder_rerank(query, standard_results, reranker, top_k=10)
rerank_latency = (time.perf_counter() - start) * 1000
print(f" FTS + Rerank: {len(reranked_results)} results, {rerank_latency:.1f}ms (rerank only)")
for i, r in enumerate(reranked_results[:3]):
ce_score = r.metadata.get("cross_encoder_prob", r.score)
print(f" {i+1}. {r.path.split(chr(92))[-1]} (CE prob: {ce_score:.4f})")
# Compare rankings
standard_order = [r.path.split("\\")[-1] for r in standard_results[:5]]
reranked_order = [r.path.split("\\")[-1] for r in reranked_results[:5]]
if standard_order != reranked_order:
print(f" Ranking changed!")
print(f" Before: {standard_order}")
print(f" After: {reranked_order}")
else:
print(f" Ranking unchanged")
except Exception as e:
print(f" FTS + Rerank: ERROR - {e}")
print("\n" + "=" * 60)
print("CONCLUSIONS")
print("=" * 60)
print("""
1. Storage Architecture:
- semantic_chunks: Used by cascade-index (binary+dense vectors)
- chunks: Used by legacy SQLiteStore (currently empty in this index)
- splade_posting_list: Used by SPLADE sparse retrieval
- files_fts_*: Used by FTS exact/fuzzy search
CONFLICT: binary_cascade_search reads from semantic_chunks,
but standard FTS reads from files table. These are SEPARATE paths.
2. Method Contributions:
- FTS: Fast but limited to keyword matching
- Vector: Semantic understanding but requires embeddings
- SPLADE: Sparse retrieval, good for keyword+semantic hybrid
3. FTS + Rerank Fusion:
- CrossEncoder reranking can improve precision
- Adds ~100-200ms latency per query
- Most effective when initial FTS recall is good
""")

View File

@@ -0,0 +1,547 @@
"""Analysis script for hybrid search method contribution and storage architecture.
This script analyzes:
1. Individual method contribution in hybrid search (FTS/SPLADE/Vector)
2. Storage architecture conflicts between different retrieval methods
3. FTS + Rerank fusion experiment
"""
import json
import sqlite3
import time
from pathlib import Path
from typing import Dict, List, Tuple, Any
from collections import defaultdict
# Add project root to path
import sys
sys.path.insert(0, str(Path(__file__).parent.parent / "src"))
from codexlens.storage.registry import RegistryStore
from codexlens.storage.path_mapper import PathMapper
from codexlens.search.hybrid_search import HybridSearchEngine
from codexlens.search.ranking import (
reciprocal_rank_fusion,
cross_encoder_rerank,
DEFAULT_WEIGHTS,
FTS_FALLBACK_WEIGHTS,
)
from codexlens.search.hybrid_search import THREE_WAY_WEIGHTS
from codexlens.entities import SearchResult
def find_project_index(source_path: Path) -> Path:
"""Find the index database for a project."""
registry = RegistryStore()
registry.initialize()
mapper = PathMapper()
index_path = mapper.source_to_index_db(source_path)
if not index_path.exists():
nearest = registry.find_nearest_index(source_path)
if nearest:
index_path = nearest.index_path
registry.close()
return index_path
def analyze_storage_architecture(index_path: Path) -> Dict[str, Any]:
"""Analyze storage tables and check for conflicts.
Returns:
Dictionary with table analysis and conflict detection.
"""
results = {
"tables": {},
"conflicts": [],
"recommendations": []
}
with sqlite3.connect(index_path) as conn:
# Get all tables
cursor = conn.execute(
"SELECT name FROM sqlite_master WHERE type='table' ORDER BY name"
)
tables = [row[0] for row in cursor.fetchall()]
for table in tables:
# Get row count and columns
try:
count = conn.execute(f"SELECT COUNT(*) FROM {table}").fetchone()[0]
cols = conn.execute(f"PRAGMA table_info({table})").fetchall()
col_names = [c[1] for c in cols]
results["tables"][table] = {
"row_count": count,
"columns": col_names
}
except Exception as e:
results["tables"][table] = {"error": str(e)}
# Check for data overlap/conflicts
# 1. Check if chunks and semantic_chunks have different data
if "chunks" in tables and "semantic_chunks" in tables:
chunks_count = results["tables"]["chunks"]["row_count"]
semantic_count = results["tables"]["semantic_chunks"]["row_count"]
if chunks_count > 0 and semantic_count > 0:
# Check for ID overlap
overlap = conn.execute("""
SELECT COUNT(*) FROM chunks c
JOIN semantic_chunks sc ON c.id = sc.id
""").fetchone()[0]
results["conflicts"].append({
"type": "table_overlap",
"tables": ["chunks", "semantic_chunks"],
"chunks_count": chunks_count,
"semantic_count": semantic_count,
"id_overlap": overlap,
"description": (
f"Both chunks ({chunks_count}) and semantic_chunks ({semantic_count}) "
f"have data. ID overlap: {overlap}. "
"This can cause confusion - binary_cascade reads from semantic_chunks "
"but SQLiteStore reads from chunks."
)
})
elif chunks_count == 0 and semantic_count > 0:
results["recommendations"].append(
"chunks table is empty but semantic_chunks has data. "
"Use cascade-index (semantic_chunks) for better semantic search."
)
elif chunks_count > 0 and semantic_count == 0:
results["recommendations"].append(
"semantic_chunks is empty. Run 'codexlens cascade-index' to enable "
"binary cascade search."
)
# 2. Check SPLADE index status
if "splade_posting_list" in tables:
splade_count = results["tables"]["splade_posting_list"]["row_count"]
if splade_count == 0:
results["recommendations"].append(
"SPLADE tables exist but empty. Run SPLADE indexing to enable sparse retrieval."
)
# 3. Check FTS tables
fts_tables = [t for t in tables if t.startswith("files_fts")]
if len(fts_tables) >= 2:
results["recommendations"].append(
f"Found {len(fts_tables)} FTS tables: {fts_tables}. "
"Dual FTS (exact + fuzzy) is properly configured."
)
return results
def analyze_method_contributions(
index_path: Path,
queries: List[str],
limit: int = 20
) -> Dict[str, Any]:
"""Analyze contribution of each retrieval method.
Runs each method independently and measures:
- Result count
- Latency
- Score distribution
- Overlap with other methods
"""
results = {
"per_query": [],
"summary": {}
}
for query in queries:
query_result = {
"query": query,
"methods": {},
"fusion_analysis": {}
}
# Run each method independently
methods = {
"fts_exact": {"fuzzy": False, "vector": False, "splade": False},
"fts_fuzzy": {"fuzzy": True, "vector": False, "splade": False},
"vector": {"fuzzy": False, "vector": True, "splade": False},
"splade": {"fuzzy": False, "vector": False, "splade": True},
}
method_results: Dict[str, List[SearchResult]] = {}
for method_name, config in methods.items():
try:
engine = HybridSearchEngine()
# Set config to disable/enable specific backends
engine._config = type('obj', (object,), {
'use_fts_fallback': method_name.startswith("fts"),
'enable_splade': method_name == "splade",
'embedding_use_gpu': True,
})()
start = time.perf_counter()
if method_name == "fts_exact":
# Force FTS fallback mode with fuzzy disabled
engine.weights = FTS_FALLBACK_WEIGHTS.copy()
results_list = engine.search(
index_path, query, limit=limit,
enable_fuzzy=False, enable_vector=False, pure_vector=False
)
elif method_name == "fts_fuzzy":
engine.weights = FTS_FALLBACK_WEIGHTS.copy()
results_list = engine.search(
index_path, query, limit=limit,
enable_fuzzy=True, enable_vector=False, pure_vector=False
)
elif method_name == "vector":
results_list = engine.search(
index_path, query, limit=limit,
enable_fuzzy=False, enable_vector=True, pure_vector=True
)
elif method_name == "splade":
engine.weights = {"splade": 1.0}
results_list = engine.search(
index_path, query, limit=limit,
enable_fuzzy=False, enable_vector=False, pure_vector=False
)
else:
results_list = []
latency = (time.perf_counter() - start) * 1000
method_results[method_name] = results_list
scores = [r.score for r in results_list]
query_result["methods"][method_name] = {
"count": len(results_list),
"latency_ms": latency,
"avg_score": sum(scores) / len(scores) if scores else 0,
"max_score": max(scores) if scores else 0,
"min_score": min(scores) if scores else 0,
"top_3_files": [r.path.split("\\")[-1] for r in results_list[:3]]
}
except Exception as e:
query_result["methods"][method_name] = {
"error": str(e),
"count": 0
}
# Compute overlap between methods
method_paths = {
name: set(r.path for r in results)
for name, results in method_results.items()
if results
}
overlaps = {}
method_names = list(method_paths.keys())
for i, m1 in enumerate(method_names):
for m2 in method_names[i+1:]:
overlap = len(method_paths[m1] & method_paths[m2])
union = len(method_paths[m1] | method_paths[m2])
jaccard = overlap / union if union > 0 else 0
overlaps[f"{m1}_vs_{m2}"] = {
"overlap_count": overlap,
"jaccard": jaccard,
f"{m1}_unique": len(method_paths[m1] - method_paths[m2]),
f"{m2}_unique": len(method_paths[m2] - method_paths[m1]),
}
query_result["overlaps"] = overlaps
# Analyze RRF fusion contribution
if len(method_results) >= 2:
# Compute RRF with each method's contribution
rrf_map = {}
for name, results in method_results.items():
if results and name in ["fts_exact", "splade", "vector"]:
# Rename for RRF
rrf_name = name.replace("fts_exact", "exact")
rrf_map[rrf_name] = results
if rrf_map:
fused = reciprocal_rank_fusion(rrf_map, k=60)
# Analyze which methods contributed to top results
source_contributions = defaultdict(int)
for r in fused[:10]:
source_ranks = r.metadata.get("source_ranks", {})
for source in source_ranks:
source_contributions[source] += 1
query_result["fusion_analysis"] = {
"total_fused": len(fused),
"top_10_source_distribution": dict(source_contributions)
}
results["per_query"].append(query_result)
# Compute summary statistics
method_stats = defaultdict(lambda: {"counts": [], "latencies": []})
for qr in results["per_query"]:
for method, data in qr["methods"].items():
if "count" in data:
method_stats[method]["counts"].append(data["count"])
if "latency_ms" in data:
method_stats[method]["latencies"].append(data["latency_ms"])
results["summary"] = {
method: {
"avg_count": sum(s["counts"]) / len(s["counts"]) if s["counts"] else 0,
"avg_latency_ms": sum(s["latencies"]) / len(s["latencies"]) if s["latencies"] else 0,
}
for method, s in method_stats.items()
}
return results
def experiment_fts_rerank_fusion(
index_path: Path,
queries: List[str],
limit: int = 10,
coarse_k: int = 50
) -> Dict[str, Any]:
"""Experiment: FTS + Rerank fusion vs standard hybrid.
Compares:
1. Standard Hybrid (SPLADE + Vector RRF)
2. FTS + CrossEncoder Rerank -> then fuse with Vector
"""
results = {
"per_query": [],
"summary": {}
}
# Initialize reranker
try:
from codexlens.semantic.reranker import get_reranker, check_reranker_available
ok, _ = check_reranker_available("onnx")
if ok:
reranker = get_reranker(backend="onnx", use_gpu=True)
else:
reranker = None
except Exception as e:
print(f"Reranker unavailable: {e}")
reranker = None
for query in queries:
query_result = {
"query": query,
"strategies": {}
}
# Strategy 1: Standard Hybrid (SPLADE + Vector)
try:
engine = HybridSearchEngine(weights=DEFAULT_WEIGHTS)
engine._config = type('obj', (object,), {
'enable_splade': True,
'use_fts_fallback': False,
'embedding_use_gpu': True,
})()
start = time.perf_counter()
standard_results = engine.search(
index_path, query, limit=limit,
enable_vector=True
)
standard_latency = (time.perf_counter() - start) * 1000
query_result["strategies"]["standard_hybrid"] = {
"count": len(standard_results),
"latency_ms": standard_latency,
"top_5": [r.path.split("\\")[-1] for r in standard_results[:5]],
"scores": [r.score for r in standard_results[:5]]
}
except Exception as e:
query_result["strategies"]["standard_hybrid"] = {"error": str(e)}
# Strategy 2: FTS + Rerank -> Fuse with Vector
try:
# Step 1: Get FTS results (coarse)
fts_engine = HybridSearchEngine(weights=FTS_FALLBACK_WEIGHTS)
fts_engine._config = type('obj', (object,), {
'use_fts_fallback': True,
'enable_splade': False,
'embedding_use_gpu': True,
})()
start = time.perf_counter()
fts_results = fts_engine.search(
index_path, query, limit=coarse_k,
enable_fuzzy=True, enable_vector=False
)
fts_latency = (time.perf_counter() - start) * 1000
# Step 2: Rerank FTS results with CrossEncoder
if reranker and fts_results:
rerank_start = time.perf_counter()
reranked_fts = cross_encoder_rerank(
query, fts_results, reranker, top_k=20
)
rerank_latency = (time.perf_counter() - rerank_start) * 1000
else:
reranked_fts = fts_results[:20]
rerank_latency = 0
# Step 3: Get Vector results
vector_engine = HybridSearchEngine()
vector_results = vector_engine.search(
index_path, query, limit=20,
enable_vector=True, pure_vector=True
)
# Step 4: Fuse reranked FTS with Vector
if reranked_fts and vector_results:
fusion_map = {
"fts_reranked": reranked_fts,
"vector": vector_results
}
fused_results = reciprocal_rank_fusion(
fusion_map,
weights={"fts_reranked": 0.5, "vector": 0.5},
k=60
)
else:
fused_results = reranked_fts or vector_results or []
total_latency = fts_latency + rerank_latency + (time.perf_counter() - start) * 1000
query_result["strategies"]["fts_rerank_fusion"] = {
"count": len(fused_results),
"total_latency_ms": fts_latency + rerank_latency,
"fts_latency_ms": fts_latency,
"rerank_latency_ms": rerank_latency,
"top_5": [r.path.split("\\")[-1] for r in fused_results[:5]],
"scores": [r.score for r in fused_results[:5]]
}
except Exception as e:
query_result["strategies"]["fts_rerank_fusion"] = {"error": str(e)}
# Compute overlap between strategies
if (
"error" not in query_result["strategies"].get("standard_hybrid", {})
and "error" not in query_result["strategies"].get("fts_rerank_fusion", {})
):
standard_paths = set(r.path.split("\\")[-1] for r in standard_results[:10])
fts_rerank_paths = set(r.path.split("\\")[-1] for r in fused_results[:10])
overlap = len(standard_paths & fts_rerank_paths)
query_result["comparison"] = {
"top_10_overlap": overlap,
"standard_unique": list(standard_paths - fts_rerank_paths)[:3],
"fts_rerank_unique": list(fts_rerank_paths - standard_paths)[:3]
}
results["per_query"].append(query_result)
return results
def main():
"""Run all analyses."""
source_path = Path("D:/Claude_dms3/codex-lens/src")
index_path = find_project_index(source_path)
print(f"Using index: {index_path}")
print(f"Index exists: {index_path.exists()}")
print()
# Test queries
queries = [
"binary quantization",
"hamming distance search",
"embeddings generation",
"reranking algorithm",
"database connection handling",
]
# 1. Storage Architecture Analysis
print("=" * 60)
print("1. STORAGE ARCHITECTURE ANALYSIS")
print("=" * 60)
storage_analysis = analyze_storage_architecture(index_path)
print("\nTable Overview:")
for table, info in sorted(storage_analysis["tables"].items()):
if "row_count" in info:
print(f" {table}: {info['row_count']} rows")
print("\nConflicts Detected:")
for conflict in storage_analysis["conflicts"]:
print(f" - {conflict['description']}")
print("\nRecommendations:")
for rec in storage_analysis["recommendations"]:
print(f" - {rec}")
# 2. Method Contribution Analysis
print("\n" + "=" * 60)
print("2. METHOD CONTRIBUTION ANALYSIS")
print("=" * 60)
contribution_analysis = analyze_method_contributions(index_path, queries)
print("\nPer-Query Results:")
for qr in contribution_analysis["per_query"]:
print(f"\n Query: '{qr['query']}'")
for method, data in qr["methods"].items():
if "error" not in data:
print(f" {method}: {data['count']} results, {data['latency_ms']:.1f}ms")
if data.get("top_3_files"):
print(f" Top 3: {', '.join(data['top_3_files'])}")
if qr.get("overlaps"):
print(" Overlaps:")
for pair, info in qr["overlaps"].items():
print(f" {pair}: {info['overlap_count']} common (Jaccard: {info['jaccard']:.2f})")
print("\nSummary:")
for method, stats in contribution_analysis["summary"].items():
print(f" {method}: avg {stats['avg_count']:.1f} results, {stats['avg_latency_ms']:.1f}ms")
# 3. FTS + Rerank Fusion Experiment
print("\n" + "=" * 60)
print("3. FTS + RERANK FUSION EXPERIMENT")
print("=" * 60)
fusion_experiment = experiment_fts_rerank_fusion(index_path, queries)
print("\nPer-Query Comparison:")
for qr in fusion_experiment["per_query"]:
print(f"\n Query: '{qr['query']}'")
for strategy, data in qr["strategies"].items():
if "error" not in data:
latency = data.get("total_latency_ms") or data.get("latency_ms", 0)
print(f" {strategy}: {data['count']} results, {latency:.1f}ms")
if data.get("top_5"):
print(f" Top 5: {', '.join(data['top_5'][:3])}...")
if qr.get("comparison"):
comp = qr["comparison"]
print(f" Top-10 Overlap: {comp['top_10_overlap']}/10")
# Save full results
output_path = Path(__file__).parent / "results" / "method_contribution_analysis.json"
output_path.parent.mkdir(exist_ok=True)
full_results = {
"storage_analysis": storage_analysis,
"contribution_analysis": contribution_analysis,
"fusion_experiment": fusion_experiment
}
with open(output_path, "w", encoding="utf-8") as f:
json.dump(full_results, f, indent=2, default=str)
print(f"\n\nFull results saved to: {output_path}")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,406 @@
{
"storage_analysis": {
"tables": {
"code_relationships": {
"row_count": 0,
"columns": [
"id",
"source_symbol_id",
"target_qualified_name",
"relationship_type",
"source_line",
"target_file"
]
},
"embeddings_config": {
"row_count": 1,
"columns": [
"id",
"model_profile",
"model_name",
"embedding_dim",
"backend",
"created_at",
"updated_at"
]
},
"file_keywords": {
"row_count": 0,
"columns": [
"file_id",
"keyword_id"
]
},
"files": {
"row_count": 0,
"columns": [
"id",
"name",
"full_path",
"language",
"content",
"mtime",
"line_count"
]
},
"files_fts_exact": {
"row_count": 0,
"columns": [
"name",
"full_path",
"content"
]
},
"files_fts_exact_config": {
"row_count": 1,
"columns": [
"k",
"v"
]
},
"files_fts_exact_data": {
"row_count": 2,
"columns": [
"id",
"block"
]
},
"files_fts_exact_docsize": {
"row_count": 0,
"columns": [
"id",
"sz"
]
},
"files_fts_exact_idx": {
"row_count": 0,
"columns": [
"segid",
"term",
"pgno"
]
},
"files_fts_fuzzy": {
"row_count": 0,
"columns": [
"name",
"full_path",
"content"
]
},
"files_fts_fuzzy_config": {
"row_count": 1,
"columns": [
"k",
"v"
]
},
"files_fts_fuzzy_data": {
"row_count": 2,
"columns": [
"id",
"block"
]
},
"files_fts_fuzzy_docsize": {
"row_count": 0,
"columns": [
"id",
"sz"
]
},
"files_fts_fuzzy_idx": {
"row_count": 0,
"columns": [
"segid",
"term",
"pgno"
]
},
"graph_neighbors": {
"row_count": 0,
"columns": [
"source_symbol_id",
"neighbor_symbol_id",
"relationship_depth"
]
},
"keywords": {
"row_count": 0,
"columns": [
"id",
"keyword"
]
},
"merkle_hashes": {
"row_count": 0,
"columns": [
"file_id",
"sha256",
"updated_at"
]
},
"merkle_state": {
"row_count": 1,
"columns": [
"id",
"root_hash",
"updated_at"
]
},
"semantic_chunks": {
"row_count": 0,
"columns": [
"id",
"file_path",
"content",
"embedding",
"metadata",
"created_at",
"embedding_binary",
"embedding_dense"
]
},
"semantic_metadata": {
"row_count": 0,
"columns": [
"id",
"file_id",
"summary",
"purpose",
"llm_tool",
"generated_at"
]
},
"sqlite_sequence": {
"row_count": 0,
"columns": [
"name",
"seq"
]
},
"subdirs": {
"row_count": 2,
"columns": [
"id",
"name",
"index_path",
"files_count",
"last_updated"
]
},
"symbols": {
"row_count": 0,
"columns": [
"id",
"file_id",
"name",
"kind",
"start_line",
"end_line"
]
}
},
"conflicts": [],
"recommendations": [
"Found 10 FTS tables: ['files_fts_exact', 'files_fts_exact_config', 'files_fts_exact_data', 'files_fts_exact_docsize', 'files_fts_exact_idx', 'files_fts_fuzzy', 'files_fts_fuzzy_config', 'files_fts_fuzzy_data', 'files_fts_fuzzy_docsize', 'files_fts_fuzzy_idx']. Dual FTS (exact + fuzzy) is properly configured."
]
},
"contribution_analysis": {
"per_query": [
{
"query": "binary quantization",
"methods": {
"fts_exact": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"fts_fuzzy": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"vector": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"splade": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
}
},
"fusion_analysis": {},
"overlaps": {}
},
{
"query": "hamming distance search",
"methods": {
"fts_exact": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"fts_fuzzy": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"vector": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"splade": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
}
},
"fusion_analysis": {},
"overlaps": {}
},
{
"query": "embeddings generation",
"methods": {
"fts_exact": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"fts_fuzzy": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"vector": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"splade": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
}
},
"fusion_analysis": {},
"overlaps": {}
},
{
"query": "reranking algorithm",
"methods": {
"fts_exact": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"fts_fuzzy": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"vector": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"splade": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
}
},
"fusion_analysis": {},
"overlaps": {}
},
{
"query": "database connection handling",
"methods": {
"fts_exact": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"fts_fuzzy": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"vector": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
},
"splade": {
"error": "'obj' object has no attribute 'symbol_boost_factor'",
"count": 0
}
},
"fusion_analysis": {},
"overlaps": {}
}
],
"summary": {
"fts_exact": {
"avg_count": 0.0,
"avg_latency_ms": 0
},
"fts_fuzzy": {
"avg_count": 0.0,
"avg_latency_ms": 0
},
"vector": {
"avg_count": 0.0,
"avg_latency_ms": 0
},
"splade": {
"avg_count": 0.0,
"avg_latency_ms": 0
}
}
},
"fusion_experiment": {
"per_query": [
{
"query": "binary quantization",
"strategies": {
"standard_hybrid": {
"error": "'obj' object has no attribute 'symbol_boost_factor'"
},
"fts_rerank_fusion": {
"error": "'obj' object has no attribute 'symbol_boost_factor'"
}
}
},
{
"query": "hamming distance search",
"strategies": {
"standard_hybrid": {
"error": "'obj' object has no attribute 'symbol_boost_factor'"
},
"fts_rerank_fusion": {
"error": "'obj' object has no attribute 'symbol_boost_factor'"
}
}
},
{
"query": "embeddings generation",
"strategies": {
"standard_hybrid": {
"error": "'obj' object has no attribute 'symbol_boost_factor'"
},
"fts_rerank_fusion": {
"error": "'obj' object has no attribute 'symbol_boost_factor'"
}
}
},
{
"query": "reranking algorithm",
"strategies": {
"standard_hybrid": {
"error": "'obj' object has no attribute 'symbol_boost_factor'"
},
"fts_rerank_fusion": {
"error": "'obj' object has no attribute 'symbol_boost_factor'"
}
}
},
{
"query": "database connection handling",
"strategies": {
"standard_hybrid": {
"error": "'obj' object has no attribute 'symbol_boost_factor'"
},
"fts_rerank_fusion": {
"error": "'obj' object has no attribute 'symbol_boost_factor'"
}
}
}
],
"summary": {}
}
}

View File

@@ -1033,6 +1033,28 @@ class VectorStore:
row = conn.execute("SELECT COUNT(*) FROM semantic_chunks").fetchone()
return row[0] if row else 0
def get_all_chunks(self) -> List[SemanticChunk]:
"""Get all chunks from the store.
Returns:
List of SemanticChunk objects with id and content.
"""
with sqlite3.connect(self.db_path) as conn:
conn.row_factory = sqlite3.Row
rows = conn.execute(
"SELECT id, file_path, content, metadata FROM semantic_chunks"
).fetchall()
chunks = []
for row in rows:
chunks.append(SemanticChunk(
id=row["id"],
content=row["content"],
file_path=row["file_path"],
metadata=json.loads(row["metadata"]) if row["metadata"] else None,
))
return chunks
def clear_cache(self) -> None:
"""Manually clear the embedding cache."""
self._invalidate_cache()