refactor: Align python-tools-strategy.md with intelligent-tools-strategy format

- Transform from command reference to strategic decision framework
- Add core framework with decision principles and execution rules
- Include universal command template with PURPOSE/TASK/CONTEXT/EXPECTED structure
- Add tool selection matrix and workflow integration patterns
- Include planning checklist and best practices sections
- Add hierarchical vector system details and migration benefits
- Provide quick setup guide and decision framework

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
catlog22
2025-09-23 22:29:40 +08:00
parent 9a1e90e558
commit 6303aa82dc

View File

@@ -1,451 +1,223 @@
---
name: python-tools-strategy
description: Command reference for Python-based tool invocation
type: command-reference
description: Strategic framework for Python-based intelligent tool selection
type: strategic-guideline
---
# Python Tools Command Reference
# Python Tools Selection Strategy
## ⚡ Quick Commands
## ⚡ Core Framework
**Smart Analysis**: `pycli --analyze --query "search term" --tool [gemini/codex]`
**Direct Tool Invocation**: `pycli --analyze --tool [gemini/codex] -p "prompt"`
**Vector Database Setup**: `pycli --init`
**Vector Database Update**: `pycli --update-embeddings`
**Python CLI (pycli)**: Unified interface for intelligent context discovery and tool execution
**Vector Database**: Hierarchical semantic search with automatic parent discovery
**Smart Analysis**: Context-aware file selection with similarity scoring
## ⏰ When to Use What
### Decision Principles
- **Context first** - Use vector search for intelligent file discovery
- **Hierarchical by default** - Leverage parent directory vector databases automatically
- **Semantic over syntactic** - Find relevant code by meaning, not just keywords
- **Tool integration** - Seamlessly combine context discovery with Gemini/Codex execution
### 🔄 Vector Database Timing
### Quick Decision Rules
1. **Need context discovery?** → Start with `pycli --analyze --query`
2. **Know exact files?** → Use `pycli --analyze -p` directly
3. **First time in project?** → Run `pycli --init` first
4. **Files changed?** → Update with `pycli --update-embeddings`
### Core Execution Rules
- **Default Tool**: Gemini for analysis, Codex for development
- **Similarity Threshold**: 0.3 minimum for relevant results
- **Hierarchical Search**: Automatic parent directory vector database discovery
- **Command Pattern**: Always use `pycli` wrapper for consistent interface
## 🎯 Universal Command Template
### Standard Format (REQUIRED)
```bash
# FIRST TIME (run once per project)
# Smart Context Discovery
pycli --analyze --query "
PURPOSE: [clear analysis goal]
SEARCH: [semantic search terms]
TOOL: [gemini/codex/both]
EXPECTED: [expected context and output]
" --tool [gemini/codex]
# Direct Tool Execution
pycli --analyze --tool [gemini/codex] -p "
PURPOSE: [clear execution goal]
TASK: [specific execution task]
CONTEXT: [known file references]
EXPECTED: [expected deliverables]
"
```
### Template Structure
- [ ] **PURPOSE** - Clear goal and intent for analysis
- [ ] **SEARCH/TASK** - Semantic search terms or specific task
- [ ] **TOOL** - Gemini for analysis, Codex for development
- [ ] **CONTEXT** - File references and project context
- [ ] **EXPECTED** - Clear expected results and format
## 📊 Tool Selection Matrix
| Task Type | Command | Use Case | Context Strategy |
|-----------|---------|----------|------------------|
| **Context Discovery** | `pycli --analyze --query` | Code exploration, pattern finding | Vector similarity search |
| **Targeted Analysis** | `pycli --analyze --tool gemini -p` | Architecture review, understanding | Known file analysis |
| **Development** | `pycli --analyze --tool codex -p` | Feature implementation, bug fixes | Smart context + execution |
| **Setup** | `pycli --init` | Project initialization | Vector database creation |
| **Maintenance** | `pycli --update-embeddings` | Index updates after changes | Incremental vectorization |
| **Health Check** | `pycli --status` | System verification | Database validation |
## 🚀 Usage Patterns
### Workflow Integration (REQUIRED)
When planning any coding task, **ALWAYS** integrate Python CLI tools:
1. **Discovery Phase**: Use `pycli --analyze --query` for context
2. **Analysis Phase**: Use Gemini for understanding with smart context
3. **Implementation Phase**: Use Codex for development with relevant files
4. **Validation Phase**: Update embeddings and verify results
### Common Scenarios
```bash
# Project Context Discovery
pycli --analyze --query "
PURPOSE: Understand authentication architecture
SEARCH: authentication patterns, login systems, user management
TOOL: gemini
EXPECTED: Architecture overview and key implementation files
" --tool gemini
# Feature Development with Context
pycli --analyze --query "
PURPOSE: Implement user registration
SEARCH: user creation, validation patterns, database models
TOOL: codex
EXPECTED: Complete registration module with tests
" --tool codex
# Code Quality Analysis
pycli --analyze --query "
PURPOSE: Review error handling patterns
SEARCH: exception handling, error middleware, logging
TOOL: gemini
EXPECTED: Error handling assessment and recommendations
" --tool gemini
```
## 📋 Planning Checklist
For every development task:
- [ ] **Discovery completed** - Context discovery with vector search
- [ ] **Purpose defined** - Clear goal and intent documented
- [ ] **Tool selected** - Gemini for analysis, Codex for development
- [ ] **Context gathered** - Relevant files identified through similarity
- [ ] **Template applied** - Standard command format used
- [ ] **Embeddings updated** - Vector database reflects current state
- [ ] **Results validated** - Output quality and relevance verified
## 🎯 Key Features
### Python CLI (pycli)
- **Command**: `pycli --analyze`
- **Strengths**: Hierarchical vector search, semantic similarity, context discovery
- **Best For**: Intelligent file selection, context-aware analysis, project exploration
### Vector Database
- **Hierarchical**: Automatic parent directory discovery
- **Semantic**: Meaning-based similarity scoring
- **Efficient**: Incremental updates and smart caching
- **Scalable**: Project-wide context with subdirectory support
### Context Patterns
- Query-based: `--query "semantic search terms"`
- Direct prompt: `-p "specific task"`
- Tool selection: `--tool [gemini|codex|both]`
- Similarity control: `--top-k N --similarity-threshold X`
## 🔧 Best Practices
- **Start with discovery** - Use `--query` for context before direct prompts
- **Be semantic** - Use meaning-based search terms, not just keywords
- **Update regularly** - Run `--update-embeddings` after file changes
- **Validate context** - Check similarity scores and relevance before proceeding
- **Document patterns** - Reference successful query patterns for reuse
- **Leverage hierarchy** - Work in subdirectories, let parent DBs provide context
## 📁 Hierarchical Vector System
**Base Structure**: `~/.claude/vector_db/[project-path]/`
### Automatic Discovery
```
Project Structure Vector Database Usage
/project/ Creates: ~/.claude/vector_db/project/
├── src/ → Uses parent DB automatically
│ ├── auth/ → Uses parent DB automatically
│ └── api/ → Uses parent DB automatically
└── tests/ → Uses parent DB automatically
```
### Smart Context Integration
- **Parent Discovery**: Subdirectories automatically use parent vector DB
- **Semantic Search**: Find files by meaning, not just filename patterns
- **Similarity Scoring**: Relevance-based file selection with configurable thresholds
- **Incremental Updates**: Efficient re-indexing of only changed files
### Migration Benefits
```bash
# Enhanced Context Discovery (vs traditional grep/find)
# OLD: find . -name "*auth*" | head -10
# NEW: pycli --analyze --query "authentication patterns" --tool gemini
# OLD: grep -r "login" src/ | head -20
# NEW: pycli --analyze --query "login implementation" --tool codex
# OLD: ~/.claude/scripts/gemini-wrapper -p "analyze auth"
# NEW: pycli --analyze --query "authentication architecture" --tool gemini
```
## 🎯 Quick Setup Guide
### Project Setup (One-time per project)
```bash
# 1. Navigate to project root
cd /path/to/project
# 2. Initialize vector database
pycli --init
# DAILY (when files change)
# 3. Verify setup
pycli --status
```
### Daily Workflow
```bash
# 1. Update embeddings (after file changes)
pycli --update-embeddings
# BEFORE ANALYSIS (check status)
pycli --status
# 2. Smart context discovery
pycli --analyze --query "your search terms" --tool gemini
# 3. Targeted development
pycli --analyze --query "implementation patterns" --tool codex
```
### 🎯 Tool Selection Timing
- **Code Discovery** → Use `pycli --analyze --query` to find relevant files
- **Direct Analysis** → Use `pycli --analyze -p` when you know what to analyze
- **Development** → Use `--tool codex` for implementation tasks
- **Understanding** → Use `--tool gemini` for analysis and exploration
## 🎯 Core Commands
### Smart Analysis (Recommended)
```bash
# Find similar code patterns and analyze
pycli --analyze --query "authentication patterns" --tool gemini
# Search with development context
pycli --analyze --query "error handling" --tool codex
# Both discovery and analysis
pycli --analyze --query "database connections" --tool both
```
### Direct Tool Invocation
```bash
# Direct analysis with known context
pycli --analyze --tool gemini -p "analyze authentication patterns"
# Direct development task
pycli --analyze --tool codex -p "implement user login"
# Status and testing
pycli --status
pycli --test-search
```
### Vector Database Operations
```bash
# Initial setup (run once per project)
pycli --init
# Daily updates (run when files change)
pycli --update-embeddings
# Status check
pycli --status
```
## 📊 Command Matrix
| What You Want | Command | Use Case |
|---------------|---------|----------|
| **Smart analysis** | `pycli --analyze --query "pattern" --tool gemini` | Code discovery & analysis |
| **Direct analysis** | `pycli --analyze --tool gemini -p "prompt"` | Known target analysis |
| **Generate code** | `pycli --analyze --tool codex -p "task"` | Development |
| **Setup project** | `pycli --init` | First time setup |
| **Update search index** | `pycli --update-embeddings` | Maintenance |
| **Check status** | `pycli --status` | System health |
## 🚀 Usage Examples
### Replace Gemini Wrapper
```bash
# OLD: ~/.claude/scripts/gemini-wrapper -p "analyze auth patterns"
# NEW: pycli --analyze --tool gemini -p "analyze auth patterns"
```
### Replace Codex Commands
```bash
# OLD: codex --full-auto exec "implement login"
# NEW: pycli --analyze --tool codex -p "implement login"
```
### Smart Context Discovery
```bash
# Find relevant files first, then analyze
pycli --analyze --query "user authentication" --tool gemini
# Results include:
# - Hierarchical vector database search
# - Semantically similar files from project and parent directories
# - Generated tool command with intelligent context
# - Executed analysis with smart file selection
```
## 🔧 Command Options
### pycli (Unified Interface)
```bash
pycli [command] [options]
Commands:
--init Initialize vector database for current project
--analyze Run analysis with AI tools
--status Show system status and health
--test-search Test vector search functionality
--update-embeddings Update vector embeddings for changed files
Analysis Options:
--tool [gemini|codex|both] Which AI tool to use (default: gemini)
-p, --prompt TEXT Direct prompt for analysis
--query TEXT Semantic search query for context discovery
--top-k INTEGER Number of similar files to find (default: 10)
--similarity-threshold FLOAT Minimum similarity score (0.0-1.0)
Output Options:
--quiet Suppress progress output
--verbose Show detailed analysis information
--output [patterns|json] Output format (default: patterns)
```
### Installation & Setup
```bash
# Install pycli system
bash D:/Claude_dms3/.claude/scripts/install_pycli.sh
# The script will automatically add ~/.claude/scripts/ to your PATH
# Reload your shell configuration
source ~/.bashrc # or ~/.zshrc
# Verify installation - now you can use pycli directly
pycli --help
```
## 📋 Common Workflows
### 🚀 First-Time Setup (Vector Database)
```bash
# 1. Install pycli system
bash D:/Claude_dms3/.claude/scripts/install_pycli.sh
# 2. Initialize vector database for project
cd /path/to/your/project
pycli --init
# 3. Verify setup works
pycli --status
# 4. Test search functionality
pycli --test-search
```
### 🎯 Analysis Workflow (Recommended)
```bash
# 1. Update vectors (if files changed)
pycli --update-embeddings
# 2. Smart analysis with context discovery
pycli --analyze --query "what you're looking for" --tool gemini
# 3. Development with context
pycli --analyze --query "related patterns" --tool codex
```
### ⏰ When to Run Commands
#### 🔄 Vector Database Maintenance
```bash
# WHEN: First time using system
pycli --init
# WHEN: Files have been added/modified (daily/after coding)
pycli --update-embeddings
# WHEN: Before starting analysis (check if system ready)
pycli --status
```
#### 🎯 Analysis Timing
```bash
# WHEN: You need to find relevant code patterns
pycli --analyze --query "search term" --tool gemini
# WHEN: You have specific prompt and know context
pycli --analyze --tool gemini -p "specific prompt"
# WHEN: You want to develop/implement something
pycli --analyze --query "similar implementations" --tool codex
```
### Integration with Existing Tools
```bash
# In place of gemini-wrapper
pycli --analyze --tool gemini -p "$YOUR_PROMPT"
# In place of codex commands
pycli --analyze --tool codex -p "$YOUR_TASK"
# Enhanced with hierarchical context discovery
pycli --analyze --query "relevant context" --tool both
```
## 🎯 Quick Reference
### 🚀 Most Common Commands
```bash
# 1. Smart analysis (recommended first choice)
pycli --analyze --query "what you're looking for" --tool gemini
# 2. Direct tool call (when you know exactly what to analyze)
pycli --analyze --tool codex -p "what you want to do"
# 3. Keep embeddings updated (run after file changes)
pycli --update-embeddings
```
### ⚙️ Configuration (config.yaml)
```yaml
# Essential settings only
embeddings:
enabled: true
similarity_threshold: 0.3
tools:
default_tool: "gemini"
timeout: 300
```
### 🐛 Troubleshooting
```bash
# Check if everything works
pycli --status
# Rebuild if issues
pycli --init
# Test search functionality
pycli --test-search
```
## 🎪 Integration Decision Tree
## 🎪 Decision Framework
```
Need to analyze code?
├─ Do you know specific files to analyze?
│ ├─ YES → Use: pycli --analyze --tool [gemini/codex] -p "prompt"
│ └─ NO → Use: pycli --analyze --query "search term" --tool [gemini/codex]
Is vector database updated?
├─ UNSURE → Run: pycli --status
├─ NO → Run: pycli --update-embeddings
└─ YES → Proceed with analysis
Need intelligent code analysis?
├─ Know specific files to analyze?
│ ├─ YES → pycli --analyze --tool [gemini/codex] -p "prompt"
│ └─ NO → pycli --analyze --query "semantic search" --tool [gemini/codex]
Vector database updated?
├─ UNSURE → pycli --status
├─ NO → pycli --update-embeddings
└─ YES → Proceed with analysis
└─ First time in project?
└─ Run pycli --init first
```
## 🏗️ Hierarchical Vector Database
### Key Features
- **Automatic Parent Discovery**: Subdirectories automatically use parent's vector database
- **No Redundant Vectorization**: Avoids duplicate processing in project subdirectories
- **Central Storage**: All vector databases stored in `~/.claude/vector_db/`
- **Path-based Organization**: Vector DBs organized by project directory structure
### How It Works
```bash
# Project structure
/home/user/myproject/
├── src/
│ └── auth/ # Uses parent's vector DB
└── tests/ # Uses parent's vector DB
# Vector database structure
~/.claude/vector_db/
└── home_user_myproject/ # Single DB for entire project
├── embeddings.pkl
└── index.json
```
### Usage Examples
```bash
# Initialize at project root
cd /home/user/myproject
pycli --init
# Work in subdirectory (automatically finds parent DB)
cd src/auth
pycli --analyze --query "authentication patterns" # Uses parent's DB
# Work in another subdirectory
cd ../../tests
pycli --analyze --query "test patterns" # Uses same parent DB
```
## 🔧 Vector Database Setup & Maintenance
### ⚡ One-Time System Setup
```bash
# 1. Install dependencies (first time only)
cd .claude/python_script && pip install -r requirements.txt
# 2. Initialize vector database (creates embeddings)
python indexer.py --rebuild-index --update-embeddings
# 3. Verify setup works
python cli.py --status
# 4. Test search functionality
python cli.py --test-search
```
### 📋 What Happens During Setup
1. **File Indexing**: Scans project files and creates index
2. **Model Download**: Downloads AI model (first time only, ~500MB)
3. **Embedding Generation**: Creates vector representations of code
4. **Cache Creation**: Saves embeddings to `.claude/cache/embeddings/`
### 🎯 Verification Checklist
After setup, verify these work:
- [ ] `python cli.py --status` shows "System ready"
- [ ] `python cli.py --test-search` returns results
- [ ] Files exist: `.claude/cache/embeddings/embeddings.pkl`
- [ ] Search works: `python analyzer.py --query "test"`
### 🐛 Common Issues & Fixes
#### Nothing works / Setup failed
```bash
# Nuclear option - reset everything
rm -rf .claude/cache/embeddings/*
python indexer.py --rebuild-index --update-embeddings
```
#### Slow performance
```yaml
# In config.yaml - reduce batch size
embeddings:
batch_size: 16
```
#### No search results found
```yaml
# In config.yaml - lower similarity threshold
embeddings:
similarity_threshold: 0.1
```
#### Memory errors during setup
```yaml
# In config.yaml - use smaller batches
embeddings:
batch_size: 8
```
#### Model download fails
```bash
# Manual model download
python -c "from sentence_transformers import SentenceTransformer; SentenceTransformer('all-MiniLM-L6-v2')"
```
## 📋 Usage Rules & Best Practices
### 🎯 Core Rules
1. **Always check status first** - Run `python cli.py --status` before analysis
2. **Update after file changes** - Run `indexer.py --update-embeddings` when files modified
3. **Use vector search for discovery** - Use `analyzer.py --query` when exploring code
4. **Use direct tools for known targets** - Use `cli.py --analyze` for specific analysis
5. **Prefer context-aware tools** - Enhanced Python tools over legacy shell scripts
### ⏰ Maintenance Schedule
```bash
# DAILY (or after coding sessions)
python .claude/python_script/indexer.py --update-embeddings
# WEEKLY (or when config changes)
python .claude/python_script/cli.py --status # Check system health
# MONTHLY (or after major project changes)
python .claude/python_script/indexer.py --rebuild-index --update-embeddings
```
### 🎯 Tool Selection Rules
#### Use `cli.py --analyze --query` when:
- ✅ Exploring unfamiliar codebase
- ✅ Looking for similar code patterns
- ✅ Need context discovery for complex tasks
- ✅ Want smart file selection for tool execution
#### Use `cli.py --analyze -p` when:
- ✅ You know exactly what files to analyze
- ✅ Direct prompt execution without context search
- ✅ Quick tool invocation with known targets
#### Use `indexer.py` when:
- ✅ First time setup
- ✅ Files have been added/modified
- ✅ System performance degraded
- ✅ Configuration changed
### 🚀 Migration from Legacy Tools
#### Replace gemini-wrapper
```bash
# OLD (shell-based)
~/.claude/scripts/gemini-wrapper -p "analyze authentication"
# NEW (Python-based with hierarchical vector context)
pycli --analyze --query "authentication" --tool gemini
```
#### Replace codex commands
```bash
# OLD (direct execution)
codex --full-auto exec "implement user login"
# NEW (context-aware development with hierarchical DB)
pycli --analyze --query "login implementation patterns" --tool codex
```
#### Integration workflow
1. **Install pycli** - Run installation script once
2. **Initialize projects** - Run `pycli --init` in each project root
3. **Replace commands** - Update scripts to use `pycli` instead of direct Python calls
4. **Enjoy hierarchical benefits** - Automatic parent DB discovery in subdirectories
## 🎉 Advanced Features
### Bash Wrapper Benefits
- **Unified Interface**: Single `pycli` command for all operations
- **Smart Path Detection**: Automatically finds project roots and vector databases
- **Environment Management**: Configurable Python interpreter path
- **Hierarchical Support**: Intelligent parent directory discovery