feat: 添加重排序模型配置,支持最大输入令牌数,优化 API 批处理能力

This commit is contained in:
catlog22
2026-01-07 15:50:22 +08:00
parent 6aa79c6dc9
commit 87d38a3374
11 changed files with 220 additions and 18 deletions

View File

@@ -102,6 +102,15 @@ class LiteLLMEmbedder(AbstractEmbedder):
"""Embedding vector size."""
return self._model_config.dimensions
@property
def max_input_tokens(self) -> int:
"""Maximum token limit for embeddings.
Returns the configured max_input_tokens from model config,
enabling adaptive batch sizing based on actual model capacity.
"""
return self._model_config.max_input_tokens
def _estimate_tokens(self, text: str) -> int:
"""Estimate token count for a text using fast heuristic.
@@ -162,7 +171,7 @@ class LiteLLMEmbedder(AbstractEmbedder):
texts: str | Sequence[str],
*,
batch_size: int | None = None,
max_tokens_per_batch: int = 30000,
max_tokens_per_batch: int | None = None,
**kwargs: Any,
) -> NDArray[np.floating]:
"""Embed one or more texts.
@@ -170,7 +179,8 @@ class LiteLLMEmbedder(AbstractEmbedder):
Args:
texts: Single text or sequence of texts
batch_size: Batch size for processing (deprecated, use max_tokens_per_batch)
max_tokens_per_batch: Maximum estimated tokens per API call (default: 30000)
max_tokens_per_batch: Maximum estimated tokens per API call.
If None, uses 90% of model's max_input_tokens for safety margin.
**kwargs: Additional arguments for litellm.embedding()
Returns:
@@ -196,6 +206,15 @@ class LiteLLMEmbedder(AbstractEmbedder):
if self._provider_config.api_base and "encoding_format" not in embedding_kwargs:
embedding_kwargs["encoding_format"] = "float"
# Determine adaptive max_tokens_per_batch
# Use 90% of model's max_input_tokens as safety margin
if max_tokens_per_batch is None:
max_tokens_per_batch = int(self.max_input_tokens * 0.9)
logger.debug(
f"Using adaptive batch size: {max_tokens_per_batch} tokens "
f"(90% of {self.max_input_tokens})"
)
# Split into token-aware batches
batches = self._create_batches(text_list, max_tokens_per_batch)

View File

@@ -109,6 +109,7 @@ def _convert_json_to_internal_format(json_config: dict[str, Any]) -> dict[str, A
providers: dict[str, Any] = {}
llm_models: dict[str, Any] = {}
embedding_models: dict[str, Any] = {}
reranker_models: dict[str, Any] = {}
default_provider: str | None = None
for provider in json_config.get("providers", []):
@@ -186,6 +187,7 @@ def _convert_json_to_internal_format(json_config: dict[str, Any]) -> dict[str, A
"provider": provider_id,
"model": model.get("name", ""),
"dimensions": model.get("capabilities", {}).get("embeddingDimension", 1536),
"max_input_tokens": model.get("capabilities", {}).get("maxInputTokens", 8192),
}
# Add model-specific endpoint settings
endpoint = model.get("endpointSettings", {})
@@ -196,6 +198,29 @@ def _convert_json_to_internal_format(json_config: dict[str, Any]) -> dict[str, A
embedding_models[model_id] = embedding_model_config
# Convert reranker models
for model in provider.get("rerankerModels", []):
if not model.get("enabled", True):
continue
model_id = model.get("id", "")
if not model_id:
continue
reranker_model_config: dict[str, Any] = {
"provider": provider_id,
"model": model.get("name", ""),
"max_input_tokens": model.get("capabilities", {}).get("maxInputTokens", 8192),
"top_k": model.get("capabilities", {}).get("topK", 50),
}
# Add model-specific endpoint settings
endpoint = model.get("endpointSettings", {})
if endpoint.get("baseUrl"):
reranker_model_config["api_base"] = endpoint["baseUrl"]
if endpoint.get("timeout"):
reranker_model_config["timeout"] = endpoint["timeout"]
reranker_models[model_id] = reranker_model_config
# Ensure we have defaults if no models found
if not llm_models:
llm_models["default"] = {
@@ -208,6 +233,7 @@ def _convert_json_to_internal_format(json_config: dict[str, Any]) -> dict[str, A
"provider": default_provider or "openai",
"model": "text-embedding-3-small",
"dimensions": 1536,
"max_input_tokens": 8191,
}
return {
@@ -216,6 +242,7 @@ def _convert_json_to_internal_format(json_config: dict[str, Any]) -> dict[str, A
"providers": providers,
"llm_models": llm_models,
"embedding_models": embedding_models,
"reranker_models": reranker_models,
}

View File

@@ -34,6 +34,18 @@ class EmbeddingModelConfig(BaseModel):
provider: str # "openai", "fastembed", "ollama", etc.
model: str
dimensions: int
max_input_tokens: int = 8192 # Maximum tokens per embedding request
model_config = {"extra": "allow"}
class RerankerModelConfig(BaseModel):
"""Reranker model configuration."""
provider: str # "siliconflow", "cohere", "jina", etc.
model: str
max_input_tokens: int = 8192 # Maximum tokens per reranking request
top_k: int = 50 # Default top_k for reranking
model_config = {"extra": "allow"}
@@ -69,6 +81,7 @@ class LiteLLMConfig(BaseModel):
providers: dict[str, ProviderConfig] = Field(default_factory=dict)
llm_models: dict[str, LLMModelConfig] = Field(default_factory=dict)
embedding_models: dict[str, EmbeddingModelConfig] = Field(default_factory=dict)
reranker_models: dict[str, RerankerModelConfig] = Field(default_factory=dict)
model_config = {"extra": "allow"}
@@ -110,6 +123,25 @@ class LiteLLMConfig(BaseModel):
)
return self.embedding_models[model]
def get_reranker_model(self, model: str = "default") -> RerankerModelConfig:
"""Get reranker model configuration by name.
Args:
model: Model name or "default"
Returns:
Reranker model configuration
Raises:
ValueError: If model not found
"""
if model not in self.reranker_models:
raise ValueError(
f"Reranker model '{model}' not found in configuration. "
f"Available models: {list(self.reranker_models.keys())}"
)
return self.reranker_models[model]
def get_provider(self, provider: str) -> ProviderConfig:
"""Get provider configuration by name.

View File

@@ -1672,6 +1672,7 @@ const i18n = {
// Embedding models
'apiSettings.embeddingDimensions': 'Dimensions',
'apiSettings.embeddingMaxTokens': 'Max Tokens',
'apiSettings.rerankerTopK': 'Top K',
'apiSettings.selectEmbeddingModel': 'Select Embedding Model',
// Model modal
@@ -3698,6 +3699,7 @@ const i18n = {
// Embedding models
'apiSettings.embeddingDimensions': '向量维度',
'apiSettings.embeddingMaxTokens': '最大 Token',
'apiSettings.rerankerTopK': 'Top K',
'apiSettings.selectEmbeddingModel': '选择嵌入模型',
// Model modal

View File

@@ -1163,7 +1163,7 @@ function renderProviderDetail(providerId) {
var maskedKey = provider.apiKey ? '••••••••••••••••' + provider.apiKey.slice(-4) : '••••••••';
var currentApiBase = provider.apiBase || getDefaultApiBase(provider.type);
// Show full endpoint URL preview based on active model tab
var endpointPath = activeModelTab === 'embedding' ? '/embeddings' : '/chat/completions';
var endpointPath = activeModelTab === 'embedding' ? '/embeddings' : activeModelTab === 'reranker' ? '/rerank' : '/chat/completions';
var apiBasePreview = currentApiBase + endpointPath;
var html = '<div class="provider-detail-header">' +
@@ -1322,10 +1322,17 @@ function renderModelTree(provider) {
var embeddingBadge = model.capabilities && model.capabilities.embeddingDimension
? model.capabilities.embeddingDimension + 'd'
: '';
var displayBadge = activeModelTab === 'llm' ? badge : embeddingBadge;
// Badge for reranker models shows max tokens
var rerankerBadge = model.capabilities && model.capabilities.maxInputTokens
? formatContextWindow(model.capabilities.maxInputTokens)
: '';
var displayBadge = activeModelTab === 'llm' ? badge : activeModelTab === 'reranker' ? rerankerBadge : embeddingBadge;
var iconName = activeModelTab === 'llm' ? 'sparkles' : activeModelTab === 'reranker' ? 'arrow-up-down' : 'box';
html += '<div class="model-item" data-model-id="' + model.id + '">' +
'<i data-lucide="' + (activeModelTab === 'llm' ? 'sparkles' : 'box') + '" class="model-item-icon"></i>' +
'<i data-lucide="' + iconName + '" class="model-item-icon"></i>' +
'<span class="model-item-name">' + escapeHtml(model.name) + '</span>' +
(displayBadge ? '<span class="model-item-badge">' + displayBadge + '</span>' : '') +
'<div class="model-item-actions">' +
@@ -1966,14 +1973,25 @@ function showModelSettingsModal(providerId, modelId, modelType) {
'<label class="checkbox-label"><input type="checkbox" id="model-settings-function-calling"' + (capabilities.functionCalling ? ' checked' : '') + '> ' + t('apiSettings.functionCalling') + '</label>' +
'<label class="checkbox-label"><input type="checkbox" id="model-settings-vision"' + (capabilities.vision ? ' checked' : '') + '> ' + t('apiSettings.vision') + '</label>' +
'</div>'
) : isReranker ? (
// Reranker capabilities - only maxInputTokens and topK
'<div class="form-group">' +
'<label>' + t('apiSettings.embeddingMaxTokens') + '</label>' +
'<input type="number" id="model-settings-max-tokens" class="cli-input" value="' + (capabilities.maxInputTokens || 8192) + '" min="128">' +
'</div>' +
'<div class="form-group">' +
'<label>' + t('apiSettings.rerankerTopK') + '</label>' +
'<input type="number" id="model-settings-top-k" class="cli-input" value="' + (capabilities.topK || 50) + '" min="1" max="1000">' +
'</div>'
) : (
// Embedding capabilities - embeddingDimension and maxInputTokens
'<div class="form-group">' +
'<label>' + t('apiSettings.embeddingDimensions') + '</label>' +
'<input type="number" id="model-settings-dimensions" class="cli-input" value="' + (capabilities.embeddingDimension || 1536) + '" min="64">' +
'</div>' +
'<div class="form-group">' +
'<label>' + t('apiSettings.embeddingMaxTokens') + '</label>' +
'<input type="number" id="model-settings-max-tokens" class="cli-input" value="' + (capabilities.contextWindow || 8192) + '" min="128">' +
'<input type="number" id="model-settings-max-tokens" class="cli-input" value="' + (capabilities.maxInputTokens || 8192) + '" min="128">' +
'</div>'
)) +
'</div>' +
@@ -2070,14 +2088,14 @@ function saveModelSettings(event, providerId, modelId, modelType) {
vision: document.getElementById('model-settings-vision').checked
};
} else if (isReranker) {
var topKEl = document.getElementById('model-settings-top-k');
models[modelIndex].capabilities = {
topK: topKEl ? parseInt(topKEl.value) || 10 : 10
maxInputTokens: parseInt(document.getElementById('model-settings-max-tokens').value) || 8192,
topK: parseInt(document.getElementById('model-settings-top-k').value) || 50
};
} else {
models[modelIndex].capabilities = {
embeddingDimension: parseInt(document.getElementById('model-settings-dimensions').value) || 1536,
contextWindow: parseInt(document.getElementById('model-settings-max-tokens').value) || 8192
maxInputTokens: parseInt(document.getElementById('model-settings-max-tokens').value) || 8192
};
}
@@ -2218,7 +2236,7 @@ function updateApiBasePreview(apiBase) {
if (base.endsWith('/')) {
base = base.slice(0, -1);
}
var endpointPath = activeModelTab === 'embedding' ? '/embeddings' : '/chat/completions';
var endpointPath = activeModelTab === 'embedding' ? '/embeddings' : activeModelTab === 'reranker' ? '/rerank' : '/chat/completions';
preview.textContent = t('apiSettings.preview') + ': ' + base + endpointPath;
}

View File

@@ -140,6 +140,7 @@ class Config:
reranker_backend: str = "onnx"
reranker_model: str = "cross-encoder/ms-marco-MiniLM-L-6-v2"
reranker_top_k: int = 50
reranker_max_input_tokens: int = 8192 # Maximum tokens for reranker API batching
# Cascade search configuration (two-stage retrieval)
enable_cascade_search: bool = False # Enable cascade search (coarse + fine ranking)
@@ -277,6 +278,7 @@ class Config:
"backend": self.reranker_backend,
"model": self.reranker_model,
"top_k": self.reranker_top_k,
"max_input_tokens": self.reranker_max_input_tokens,
"pool_enabled": self.reranker_pool_enabled,
"strategy": self.reranker_strategy,
"cooldown": self.reranker_cooldown,
@@ -359,6 +361,8 @@ class Config:
self.reranker_model = reranker["model"]
if "top_k" in reranker:
self.reranker_top_k = reranker["top_k"]
if "max_input_tokens" in reranker:
self.reranker_max_input_tokens = reranker["max_input_tokens"]
if "pool_enabled" in reranker:
self.reranker_pool_enabled = reranker["pool_enabled"]
if "strategy" in reranker:

View File

@@ -1798,6 +1798,11 @@ class ChainSearchEngine:
kwargs = {}
if backend == "onnx":
kwargs["use_gpu"] = use_gpu
elif backend == "api":
# Pass max_input_tokens for adaptive batching
max_tokens = getattr(self._config, "reranker_max_input_tokens", None)
if max_tokens:
kwargs["max_input_tokens"] = max_tokens
reranker = get_reranker(backend=backend, model_name=model_name, **kwargs)

View File

@@ -400,6 +400,11 @@ class HybridSearchEngine:
elif backend == "legacy":
if not bool(getattr(self._config, "embedding_use_gpu", True)):
device = "cpu"
elif backend == "api":
# Pass max_input_tokens for adaptive batching
max_tokens = getattr(self._config, "reranker_max_input_tokens", None)
if max_tokens:
kwargs["max_input_tokens"] = max_tokens
return get_reranker(
backend=backend,

View File

@@ -69,13 +69,13 @@ class LiteLLMEmbedderWrapper(BaseEmbedder):
Returns:
int: Maximum number of tokens that can be embedded at once.
Inferred from model config or model name patterns.
Reads from LiteLLM config's max_input_tokens property.
"""
# Try to get from LiteLLM config first
if hasattr(self._embedder, 'max_input_tokens') and self._embedder.max_input_tokens:
# Get from LiteLLM embedder's max_input_tokens property (now exposed)
if hasattr(self._embedder, 'max_input_tokens'):
return self._embedder.max_input_tokens
# Infer from model name
# Fallback: infer from model name
model_name_lower = self.model_name.lower()
# Large models (8B or "large" in name)

View File

@@ -78,6 +78,7 @@ class APIReranker(BaseReranker):
backoff_max_s: float = 8.0,
env_api_key: str = _DEFAULT_ENV_API_KEY,
workspace_root: Path | str | None = None,
max_input_tokens: int | None = None,
) -> None:
ok, err = check_httpx_available()
if not ok: # pragma: no cover - exercised via factory availability tests
@@ -135,6 +136,22 @@ class APIReranker(BaseReranker):
timeout=self.timeout_s,
)
# Store max_input_tokens with model-aware defaults
if max_input_tokens is not None:
self._max_input_tokens = max_input_tokens
else:
# Infer from model name
model_lower = self.model_name.lower()
if '8b' in model_lower or 'large' in model_lower:
self._max_input_tokens = 32768
else:
self._max_input_tokens = 8192
@property
def max_input_tokens(self) -> int:
"""Return maximum token limit for reranking."""
return self._max_input_tokens
def close(self) -> None:
try:
self._client.close()
@@ -276,15 +293,78 @@ class APIReranker(BaseReranker):
}
return payload
def _estimate_tokens(self, text: str) -> int:
"""Estimate token count using fast heuristic (len/4)."""
return len(text) // 4
def _create_token_aware_batches(
self,
query: str,
documents: Sequence[str],
) -> list[list[tuple[int, str]]]:
"""Split documents into batches that fit within token limits.
Uses 90% of max_input_tokens as safety margin.
Each batch includes the query tokens overhead.
"""
max_tokens = int(self._max_input_tokens * 0.9)
query_tokens = self._estimate_tokens(query)
batches: list[list[tuple[int, str]]] = []
current_batch: list[tuple[int, str]] = []
current_tokens = query_tokens # Start with query overhead
for idx, doc in enumerate(documents):
doc_tokens = self._estimate_tokens(doc)
# If single doc + query exceeds limit, include it anyway (will be truncated by API)
if current_tokens + doc_tokens > max_tokens and current_batch:
batches.append(current_batch)
current_batch = []
current_tokens = query_tokens
current_batch.append((idx, doc))
current_tokens += doc_tokens
if current_batch:
batches.append(current_batch)
return batches
def _rerank_one_query(self, *, query: str, documents: Sequence[str]) -> list[float]:
if not documents:
return []
payload = self._build_payload(query=query, documents=documents)
data = self._request_json(payload)
# Create token-aware batches
batches = self._create_token_aware_batches(query, documents)
results = data.get("results")
return self._extract_scores_from_results(results, expected=len(documents))
if len(batches) == 1:
# Single batch - original behavior
payload = self._build_payload(query=query, documents=documents)
data = self._request_json(payload)
results = data.get("results")
return self._extract_scores_from_results(results, expected=len(documents))
# Multiple batches - process each and merge results
logger.info(
f"Splitting {len(documents)} documents into {len(batches)} batches "
f"(max_input_tokens: {self._max_input_tokens})"
)
all_scores: list[float] = [0.0] * len(documents)
for batch in batches:
batch_docs = [doc for _, doc in batch]
payload = self._build_payload(query=query, documents=batch_docs)
data = self._request_json(payload)
results = data.get("results")
batch_scores = self._extract_scores_from_results(results, expected=len(batch_docs))
# Map scores back to original indices
for (orig_idx, _), score in zip(batch, batch_scores):
all_scores[orig_idx] = score
return all_scores
def score_pairs(
self,

View File

@@ -16,6 +16,16 @@ class BaseReranker(ABC):
the abstract methods to ensure a consistent interface.
"""
@property
def max_input_tokens(self) -> int:
"""Return maximum token limit for reranking.
Returns:
int: Maximum number of tokens that can be processed at once.
Default is 8192 if not overridden by implementation.
"""
return 8192
@abstractmethod
def score_pairs(
self,