feat: 添加重排序模型配置,支持最大输入令牌数,优化 API 批处理能力

This commit is contained in:
catlog22
2026-01-07 15:50:22 +08:00
parent 6aa79c6dc9
commit 87d38a3374
11 changed files with 220 additions and 18 deletions

View File

@@ -102,6 +102,15 @@ class LiteLLMEmbedder(AbstractEmbedder):
"""Embedding vector size."""
return self._model_config.dimensions
@property
def max_input_tokens(self) -> int:
"""Maximum token limit for embeddings.
Returns the configured max_input_tokens from model config,
enabling adaptive batch sizing based on actual model capacity.
"""
return self._model_config.max_input_tokens
def _estimate_tokens(self, text: str) -> int:
"""Estimate token count for a text using fast heuristic.
@@ -162,7 +171,7 @@ class LiteLLMEmbedder(AbstractEmbedder):
texts: str | Sequence[str],
*,
batch_size: int | None = None,
max_tokens_per_batch: int = 30000,
max_tokens_per_batch: int | None = None,
**kwargs: Any,
) -> NDArray[np.floating]:
"""Embed one or more texts.
@@ -170,7 +179,8 @@ class LiteLLMEmbedder(AbstractEmbedder):
Args:
texts: Single text or sequence of texts
batch_size: Batch size for processing (deprecated, use max_tokens_per_batch)
max_tokens_per_batch: Maximum estimated tokens per API call (default: 30000)
max_tokens_per_batch: Maximum estimated tokens per API call.
If None, uses 90% of model's max_input_tokens for safety margin.
**kwargs: Additional arguments for litellm.embedding()
Returns:
@@ -196,6 +206,15 @@ class LiteLLMEmbedder(AbstractEmbedder):
if self._provider_config.api_base and "encoding_format" not in embedding_kwargs:
embedding_kwargs["encoding_format"] = "float"
# Determine adaptive max_tokens_per_batch
# Use 90% of model's max_input_tokens as safety margin
if max_tokens_per_batch is None:
max_tokens_per_batch = int(self.max_input_tokens * 0.9)
logger.debug(
f"Using adaptive batch size: {max_tokens_per_batch} tokens "
f"(90% of {self.max_input_tokens})"
)
# Split into token-aware batches
batches = self._create_batches(text_list, max_tokens_per_batch)

View File

@@ -109,6 +109,7 @@ def _convert_json_to_internal_format(json_config: dict[str, Any]) -> dict[str, A
providers: dict[str, Any] = {}
llm_models: dict[str, Any] = {}
embedding_models: dict[str, Any] = {}
reranker_models: dict[str, Any] = {}
default_provider: str | None = None
for provider in json_config.get("providers", []):
@@ -186,6 +187,7 @@ def _convert_json_to_internal_format(json_config: dict[str, Any]) -> dict[str, A
"provider": provider_id,
"model": model.get("name", ""),
"dimensions": model.get("capabilities", {}).get("embeddingDimension", 1536),
"max_input_tokens": model.get("capabilities", {}).get("maxInputTokens", 8192),
}
# Add model-specific endpoint settings
endpoint = model.get("endpointSettings", {})
@@ -196,6 +198,29 @@ def _convert_json_to_internal_format(json_config: dict[str, Any]) -> dict[str, A
embedding_models[model_id] = embedding_model_config
# Convert reranker models
for model in provider.get("rerankerModels", []):
if not model.get("enabled", True):
continue
model_id = model.get("id", "")
if not model_id:
continue
reranker_model_config: dict[str, Any] = {
"provider": provider_id,
"model": model.get("name", ""),
"max_input_tokens": model.get("capabilities", {}).get("maxInputTokens", 8192),
"top_k": model.get("capabilities", {}).get("topK", 50),
}
# Add model-specific endpoint settings
endpoint = model.get("endpointSettings", {})
if endpoint.get("baseUrl"):
reranker_model_config["api_base"] = endpoint["baseUrl"]
if endpoint.get("timeout"):
reranker_model_config["timeout"] = endpoint["timeout"]
reranker_models[model_id] = reranker_model_config
# Ensure we have defaults if no models found
if not llm_models:
llm_models["default"] = {
@@ -208,6 +233,7 @@ def _convert_json_to_internal_format(json_config: dict[str, Any]) -> dict[str, A
"provider": default_provider or "openai",
"model": "text-embedding-3-small",
"dimensions": 1536,
"max_input_tokens": 8191,
}
return {
@@ -216,6 +242,7 @@ def _convert_json_to_internal_format(json_config: dict[str, Any]) -> dict[str, A
"providers": providers,
"llm_models": llm_models,
"embedding_models": embedding_models,
"reranker_models": reranker_models,
}

View File

@@ -34,6 +34,18 @@ class EmbeddingModelConfig(BaseModel):
provider: str # "openai", "fastembed", "ollama", etc.
model: str
dimensions: int
max_input_tokens: int = 8192 # Maximum tokens per embedding request
model_config = {"extra": "allow"}
class RerankerModelConfig(BaseModel):
"""Reranker model configuration."""
provider: str # "siliconflow", "cohere", "jina", etc.
model: str
max_input_tokens: int = 8192 # Maximum tokens per reranking request
top_k: int = 50 # Default top_k for reranking
model_config = {"extra": "allow"}
@@ -69,6 +81,7 @@ class LiteLLMConfig(BaseModel):
providers: dict[str, ProviderConfig] = Field(default_factory=dict)
llm_models: dict[str, LLMModelConfig] = Field(default_factory=dict)
embedding_models: dict[str, EmbeddingModelConfig] = Field(default_factory=dict)
reranker_models: dict[str, RerankerModelConfig] = Field(default_factory=dict)
model_config = {"extra": "allow"}
@@ -110,6 +123,25 @@ class LiteLLMConfig(BaseModel):
)
return self.embedding_models[model]
def get_reranker_model(self, model: str = "default") -> RerankerModelConfig:
"""Get reranker model configuration by name.
Args:
model: Model name or "default"
Returns:
Reranker model configuration
Raises:
ValueError: If model not found
"""
if model not in self.reranker_models:
raise ValueError(
f"Reranker model '{model}' not found in configuration. "
f"Available models: {list(self.reranker_models.keys())}"
)
return self.reranker_models[model]
def get_provider(self, provider: str) -> ProviderConfig:
"""Get provider configuration by name.