feat: 添加动态批量大小计算,优化嵌入管理和配置系统

This commit is contained in:
catlog22
2026-01-12 17:34:37 +08:00
parent b360e0edc7
commit 90a1321aac
6 changed files with 425 additions and 72 deletions

View File

@@ -93,6 +93,96 @@ export async function handleCodexLensConfigRoutes(ctx: RouteContext): Promise<bo
return true;
}
// API: CodexLens Workspace Status - Get FTS and Vector index status for current workspace
if (pathname === '/api/codexlens/workspace-status') {
try {
const venvStatus = await checkVenvStatus();
// Default response when not installed
if (!venvStatus.ready) {
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({
success: true,
hasIndex: false,
fts: { percent: 0, indexedFiles: 0, totalFiles: 0 },
vector: { percent: 0, filesWithEmbeddings: 0, totalFiles: 0, totalChunks: 0 }
}));
return true;
}
// Get project info for current workspace
const projectResult = await executeCodexLens(['projects', 'get', initialPath, '--json']);
if (!projectResult.success) {
// No index for this workspace
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({
success: true,
hasIndex: false,
fts: { percent: 0, indexedFiles: 0, totalFiles: 0 },
vector: { percent: 0, filesWithEmbeddings: 0, totalFiles: 0, totalChunks: 0 }
}));
return true;
}
// Parse project data
let projectData: any = null;
try {
const parsed = extractJSON(projectResult.output ?? '');
if (parsed.success && parsed.result) {
projectData = parsed.result;
}
} catch (e: unknown) {
console.error('[CodexLens] Failed to parse project data:', e instanceof Error ? e.message : String(e));
}
if (!projectData) {
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({
success: true,
hasIndex: false,
fts: { percent: 0, indexedFiles: 0, totalFiles: 0 },
vector: { percent: 0, filesWithEmbeddings: 0, totalFiles: 0, totalChunks: 0 }
}));
return true;
}
// Calculate FTS and Vector percentages
const totalFiles = projectData.total_files || 0;
const indexedFiles = projectData.indexed_files || projectData.total_files || 0;
const filesWithEmbeddings = projectData.files_with_embeddings || projectData.embedded_files || 0;
const totalChunks = projectData.total_chunks || projectData.embedded_chunks || 0;
// FTS percentage (all indexed files have FTS)
const ftsPercent = totalFiles > 0 ? Math.round((indexedFiles / totalFiles) * 100) : 0;
// Vector percentage (files with embeddings)
const vectorPercent = totalFiles > 0 ? Math.round((filesWithEmbeddings / totalFiles) * 1000) / 10 : 0;
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({
success: true,
hasIndex: true,
path: initialPath,
fts: {
percent: ftsPercent,
indexedFiles,
totalFiles
},
vector: {
percent: vectorPercent,
filesWithEmbeddings,
totalFiles,
totalChunks
}
}));
} catch (err: unknown) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ success: false, error: err instanceof Error ? err.message : String(err) }));
}
return true;
}
// API: CodexLens Bootstrap (Install)
if (pathname === '/api/codexlens/bootstrap' && req.method === 'POST') {
handlePostRequest(req, res, async () => {
@@ -164,9 +254,10 @@ export async function handleCodexLensConfigRoutes(ctx: RouteContext): Promise<bo
return true;
}
const [configResult, statusResult] = await Promise.all([
// Use projects list for accurate index_count (same source as /api/codexlens/indexes)
const [configResult, projectsResult] = await Promise.all([
executeCodexLens(['config', '--json']),
executeCodexLens(['status', '--json'])
executeCodexLens(['projects', 'list', '--json'])
]);
// Parse config (extract JSON from output that may contain log messages)
@@ -190,16 +281,27 @@ export async function handleCodexLensConfigRoutes(ctx: RouteContext): Promise<bo
}
}
// Parse status to get index_count (projects_count)
if (statusResult.success) {
// Parse projects list to get index_count (consistent with /api/codexlens/indexes)
if (projectsResult.success) {
try {
const status = extractJSON(statusResult.output ?? '');
if (status.success && status.result) {
responseData.index_count = status.result.projects_count || 0;
const projectsData = extractJSON(projectsResult.output ?? '');
if (projectsData.success && Array.isArray(projectsData.result)) {
// Filter out test/temp projects (same logic as /api/codexlens/indexes)
const validProjects = projectsData.result.filter((project: any) => {
if (project.source_root && (
project.source_root.includes('\\Temp\\') ||
project.source_root.includes('/tmp/') ||
project.total_files === 0
)) {
return false;
}
return true;
});
responseData.index_count = validProjects.length;
}
} catch (e: unknown) {
console.error('[CodexLens] Failed to parse status:', e instanceof Error ? e.message : String(e));
console.error('[CodexLens] Status output:', (statusResult.output ?? '').substring(0, 200));
console.error('[CodexLens] Failed to parse projects list:', e instanceof Error ? e.message : String(e));
console.error('[CodexLens] Projects output:', (projectsResult.output ?? '').substring(0, 200));
}
}

View File

@@ -5,6 +5,7 @@
import {
cancelIndexing,
checkVenvStatus,
checkSemanticStatus,
ensureLiteLLMEmbedderReady,
executeCodexLens,
isIndexingInProgress,
@@ -230,11 +231,29 @@ export async function handleCodexLensIndexRoutes(ctx: RouteContext): Promise<boo
const resolvedEmbeddingBackend = typeof embeddingBackend === 'string' && embeddingBackend.trim().length > 0 ? embeddingBackend : 'fastembed';
const resolvedMaxWorkers = typeof maxWorkers === 'number' ? maxWorkers : Number(maxWorkers);
// Ensure LiteLLM backend dependencies are installed before running the CLI
if (resolvedIndexType !== 'normal' && resolvedEmbeddingBackend === 'litellm') {
const installResult = await ensureLiteLLMEmbedderReady();
if (!installResult.success) {
return { success: false, error: installResult.error || 'Failed to prepare LiteLLM embedder', status: 500 };
// Pre-check: Verify embedding backend availability before proceeding with vector indexing
// This prevents silent degradation where vector indexing is skipped without error
if (resolvedIndexType !== 'normal') {
if (resolvedEmbeddingBackend === 'litellm') {
// For litellm backend, ensure ccw-litellm is installed
const installResult = await ensureLiteLLMEmbedderReady();
if (!installResult.success) {
return {
success: false,
error: installResult.error || 'LiteLLM embedding backend is not available. Please install ccw-litellm first.',
status: 500
};
}
} else {
// For fastembed backend (default), check semantic dependencies
const semanticStatus = await checkSemanticStatus();
if (!semanticStatus.available) {
return {
success: false,
error: semanticStatus.error || 'FastEmbed semantic backend is not available. Please install semantic dependencies first (CodeLens Settings → Install Semantic).',
status: 500
};
}
}
}

View File

@@ -9,7 +9,7 @@ import {
installSemantic,
} from '../../../tools/codex-lens.js';
import type { GpuMode } from '../../../tools/codex-lens.js';
import { loadLiteLLMApiConfig } from '../../../config/litellm-api-config-manager.js';
import { loadLiteLLMApiConfig, getAvailableModelsForType, getProvider, getAllProviders } from '../../../config/litellm-api-config-manager.js';
import {
isUvAvailable,
createCodexLensUvManager,
@@ -317,16 +317,21 @@ export async function handleCodexLensSemanticRoutes(ctx: RouteContext): Promise<
config_source: 'default'
};
// Load LiteLLM endpoints for dropdown
// Load LiteLLM reranker models for dropdown (from litellm-api-config providers)
try {
const litellmConfig = loadLiteLLMApiConfig(initialPath);
if (litellmConfig.endpoints && Array.isArray(litellmConfig.endpoints)) {
rerankerConfig.litellm_endpoints = litellmConfig.endpoints.map(
(ep: any) => ep.alias || ep.name || ep.baseUrl
).filter(Boolean);
const availableRerankerModels = getAvailableModelsForType(initialPath, 'reranker');
if (availableRerankerModels && Array.isArray(availableRerankerModels)) {
// Return full model info for frontend to use
(rerankerConfig as any).litellm_models = availableRerankerModels.map((m: any) => ({
modelId: m.modelId,
modelName: m.modelName,
providers: m.providers
}));
// Keep litellm_endpoints for backward compatibility (just model IDs)
rerankerConfig.litellm_endpoints = availableRerankerModels.map((m: any) => m.modelId);
}
} catch {
// LiteLLM config not available, continue with empty endpoints
// LiteLLM config not available, continue with empty models
}
// If CodexLens is installed, try to get actual config
@@ -407,6 +412,97 @@ export async function handleCodexLensSemanticRoutes(ctx: RouteContext): Promise<
try {
const updates: string[] = [];
// Special handling for litellm backend - auto-configure from litellm-api-config
if (resolvedBackend === 'litellm' && (resolvedModelName || resolvedLiteLLMEndpoint)) {
const selectedModel = resolvedModelName || resolvedLiteLLMEndpoint;
// Find the provider that has this model
const providers = getAllProviders(initialPath);
let providerWithModel: any = null;
let foundModel: any = null;
for (const provider of providers) {
if (!provider.enabled || !provider.rerankerModels) continue;
const model = provider.rerankerModels.find((m: any) => m.id === selectedModel && m.enabled);
if (model) {
providerWithModel = provider;
foundModel = model;
break;
}
}
if (providerWithModel) {
// Set backend to litellm
const backendResult = await executeCodexLens(['config', 'set', 'reranker_backend', 'litellm', '--json']);
if (backendResult.success) updates.push('backend');
// Set model
const modelResult = await executeCodexLens(['config', 'set', 'reranker_model', selectedModel, '--json']);
if (modelResult.success) updates.push('model_name');
// Auto-configure API credentials from provider
// Write to CodexLens .env file for persistence
const { writeFileSync, existsSync, readFileSync } = await import('fs');
const { join } = await import('path');
const { homedir } = await import('os');
const codexlensDir = join(homedir(), '.codexlens');
const envFile = join(codexlensDir, '.env');
// Read existing .env content
let envContent = '';
if (existsSync(envFile)) {
envContent = readFileSync(envFile, 'utf-8');
}
// Update or add RERANKER_API_KEY and RERANKER_API_BASE
const apiKey = providerWithModel.apiKey;
const apiBase = providerWithModel.apiBase;
// Helper to update env var in content
const updateEnvVar = (content: string, key: string, value: string): string => {
const regex = new RegExp(`^${key}=.*$`, 'm');
const newLine = `${key}="${value}"`;
if (regex.test(content)) {
return content.replace(regex, newLine);
} else {
return content.trim() + '\n' + newLine;
}
};
if (apiKey) {
envContent = updateEnvVar(envContent, 'RERANKER_API_KEY', apiKey);
envContent = updateEnvVar(envContent, 'CODEXLENS_RERANKER_API_KEY', apiKey);
process.env.RERANKER_API_KEY = apiKey;
updates.push('api_key (auto-configured)');
}
if (apiBase) {
envContent = updateEnvVar(envContent, 'RERANKER_API_BASE', apiBase);
envContent = updateEnvVar(envContent, 'CODEXLENS_RERANKER_API_BASE', apiBase);
process.env.RERANKER_API_BASE = apiBase;
updates.push('api_base (auto-configured)');
}
// Write updated .env
writeFileSync(envFile, envContent.trim() + '\n', 'utf-8');
return {
success: true,
message: `LiteLLM backend configured with model: ${selectedModel}`,
updated_fields: updates,
provider: providerWithModel.name,
auto_configured: true
};
} else {
return {
success: false,
error: `Model "${selectedModel}" not found in any enabled LiteLLM provider. Please configure it in API Settings first.`,
status: 400
};
}
}
// Standard handling for non-litellm backends
// Set backend
if (resolvedBackend) {
const result = await executeCodexLens(['config', 'set', 'reranker_backend', resolvedBackend, '--json']);
@@ -425,8 +521,8 @@ export async function handleCodexLensSemanticRoutes(ctx: RouteContext): Promise<
if (result.success) updates.push('api_provider');
}
// Set LiteLLM endpoint
if (resolvedLiteLLMEndpoint) {
// Set LiteLLM endpoint (for backward compatibility)
if (resolvedLiteLLMEndpoint && resolvedBackend !== 'litellm') {
const result = await executeCodexLens([
'config',
'set',

View File

@@ -6057,6 +6057,7 @@ function buildRerankerConfigContent(config) {
const availableBackends = config.available_backends || ['onnx', 'api', 'litellm', 'legacy'];
const apiProviders = config.api_providers || ['siliconflow', 'cohere', 'jina'];
const litellmEndpoints = config.litellm_endpoints || [];
const litellmModels = config.litellm_models || []; // Rich model info with providers
// ONNX models
const onnxModels = [
@@ -6067,11 +6068,12 @@ function buildRerankerConfigContent(config) {
];
// Build backend options
const hasLitellmModels = litellmModels.length > 0 || litellmEndpoints.length > 0;
const backendOptions = availableBackends.map(function(b) {
const labels = {
'onnx': 'ONNX (Local, Optimum)',
'api': 'API (SiliconFlow/Cohere/Jina)',
'litellm': 'LiteLLM (Custom Endpoint)',
'api': 'API (Manual Config)',
'litellm': hasLitellmModels ? 'LiteLLM (Auto-configured)' : 'LiteLLM (Not configured)',
'legacy': 'Legacy (SentenceTransformers)'
};
return '<option value="' + b + '" ' + (backend === b ? 'selected' : '') + '>' + (labels[b] || b) + '</option>';
@@ -6087,12 +6089,21 @@ function buildRerankerConfigContent(config) {
return '<option value="' + m + '" ' + (modelName === m ? 'selected' : '') + '>' + m + '</option>';
}).join('');
// Build LiteLLM endpoint options
const litellmOptions = litellmEndpoints.length > 0
? litellmEndpoints.map(function(ep) {
return '<option value="' + ep + '">' + ep + '</option>';
// Build LiteLLM model options (use rich model data if available)
const litellmOptions = litellmModels.length > 0
? litellmModels.map(function(m) {
// Display: "ModelName (Provider)" for better UX
const providerNames = m.providers && m.providers.length > 0
? m.providers.join(', ')
: 'Unknown';
const displayName = m.modelName + ' (' + providerNames + ')';
return '<option value="' + m.modelId + '">' + displayName + '</option>';
}).join('')
: '<option value="" disabled>No endpoints configured</option>';
: (litellmEndpoints.length > 0
? litellmEndpoints.map(function(ep) {
return '<option value="' + ep + '">' + ep + '</option>';
}).join('')
: '<option value="" disabled>No models configured</option>');
return '<div class="modal-backdrop" id="rerankerConfigModal">' +
'<div class="modal-container max-w-xl">' +
@@ -6162,13 +6173,16 @@ function buildRerankerConfigContent(config) {
// LiteLLM Section (visible when backend=litellm)
'<div id="rerankerLitellmSection" class="tool-config-section" style="display:' + (backend === 'litellm' ? 'block' : 'none') + '">' +
'<h4>' + (t('codexlens.litellmEndpoint') || 'LiteLLM Endpoint') + '</h4>' +
'<h4>' + (t('codexlens.litellmModel') || 'Reranker Model') + '</h4>' +
'<select id="rerankerLitellmEndpoint" class="w-full px-3 py-2 border border-border rounded-lg bg-background text-sm">' +
litellmOptions +
'</select>' +
(litellmEndpoints.length === 0
? '<p class="text-xs text-warning mt-1">' + (t('codexlens.noEndpointsHint') || 'Configure LiteLLM endpoints in API Settings first') + '</p>'
: '') +
((litellmModels.length > 0 || litellmEndpoints.length > 0)
? '<div class="flex items-start gap-2 mt-2 p-2 bg-success/10 border border-success/30 rounded-lg text-xs">' +
'<i data-lucide="check-circle" class="w-4 h-4 text-success mt-0.5 flex-shrink-0"></i>' +
'<span class="text-muted-foreground">' + (t('codexlens.litellmAutoConfigHint') || 'API key and endpoint will be auto-configured from your LiteLLM API Settings') + '</span>' +
'</div>'
: '<p class="text-xs text-warning mt-1">' + (t('codexlens.noEndpointsHint') || 'Configure reranker models in API Settings first') + '</p>') +
'</div>' +
// Legacy Section (visible when backend=legacy)

View File

@@ -43,6 +43,73 @@ logger = logging.getLogger(__name__)
EMBEDDING_BATCH_SIZE = 256
def calculate_dynamic_batch_size(config, embedder) -> int:
"""Calculate batch size dynamically based on model token capacity.
This function computes an optimal batch size by considering:
- Maximum chunk character size from parsing rules
- Estimated tokens per chunk (chars / chars_per_token_estimate)
- Model's maximum token capacity
- Utilization factor (default 80% to leave headroom)
Args:
config: Config object with api_batch_size_* settings
embedder: Embedding model object with max_tokens property
Returns:
Calculated batch size, clamped to [1, api_batch_size_max]
"""
# If dynamic calculation is disabled, return static value
if not getattr(config, 'api_batch_size_dynamic', False):
return getattr(config, 'api_batch_size', 8)
# Get maximum chunk character size from parsing rules
parsing_rules = getattr(config, 'parsing_rules', {})
default_rules = parsing_rules.get('default', {})
max_chunk_chars = default_rules.get('max_chunk_chars', 4000)
# Get characters per token estimate
chars_per_token = getattr(config, 'chars_per_token_estimate', 4)
if chars_per_token <= 0:
chars_per_token = 4 # Safe default
# Estimate tokens per chunk
estimated_tokens_per_chunk = max_chunk_chars / chars_per_token
# Prevent division by zero
if estimated_tokens_per_chunk <= 0:
return getattr(config, 'api_batch_size', 8)
# Get model's maximum token capacity
model_max_tokens = getattr(embedder, 'max_tokens', 8192)
# Get utilization factor (default 80%)
utilization_factor = getattr(config, 'api_batch_size_utilization_factor', 0.8)
if utilization_factor <= 0 or utilization_factor > 1:
utilization_factor = 0.8
# Calculate safe token limit
safe_token_limit = model_max_tokens * utilization_factor
# Calculate dynamic batch size
dynamic_batch_size = int(safe_token_limit / estimated_tokens_per_chunk)
# Get maximum batch size limit
batch_size_max = getattr(config, 'api_batch_size_max', 2048)
# Clamp to [1, batch_size_max]
result = max(1, min(dynamic_batch_size, batch_size_max))
logger.debug(
"Dynamic batch size calculated: %d (max_chunk_chars=%d, chars_per_token=%d, "
"model_max_tokens=%d, utilization=%.1f%%, limit=%d)",
result, max_chunk_chars, chars_per_token, model_max_tokens,
utilization_factor * 100, batch_size_max
)
return result
def _build_categories_from_batch(chunk_batch: List[Tuple[Any, str]]) -> List[str]:
"""Build categories list from chunk batch for index-level category filtering.
@@ -464,6 +531,14 @@ def generate_embeddings(
progress_callback(f"Using {endpoint_count} API endpoints with {strategy} strategy")
progress_callback(f"Using model: {embedder.model_name} ({embedder.embedding_dim} dimensions)")
# Calculate dynamic batch size based on model capacity
from codexlens.config import Config
batch_config = Config.load()
effective_batch_size = calculate_dynamic_batch_size(batch_config, embedder)
if progress_callback and batch_config.api_batch_size_dynamic:
progress_callback(f"Dynamic batch size: {effective_batch_size} (model max_tokens={getattr(embedder, 'max_tokens', 8192)})")
except Exception as e:
return {
"success": False,
@@ -477,7 +552,7 @@ def generate_embeddings(
total_chunks_created = 0
total_files_processed = 0
FILE_BATCH_SIZE = 100 # Process 100 files at a time
# EMBEDDING_BATCH_SIZE is defined at module level (default: 256)
# effective_batch_size is calculated above (dynamic or EMBEDDING_BATCH_SIZE fallback)
try:
with VectorStore(index_path) as vector_store:
@@ -535,7 +610,7 @@ def generate_embeddings(
# Fallback to fixed-size batching for backward compatibility
def fixed_size_batches():
while True:
batch = list(islice(chunk_generator, EMBEDDING_BATCH_SIZE))
batch = list(islice(chunk_generator, effective_batch_size))
if not batch:
break
yield batch
@@ -566,7 +641,7 @@ def generate_embeddings(
for attempt in range(max_retries + 1):
try:
batch_contents = [chunk.content for chunk, _ in chunk_batch]
embeddings_numpy = embedder.embed_to_numpy(batch_contents, batch_size=EMBEDDING_BATCH_SIZE)
embeddings_numpy = embedder.embed_to_numpy(batch_contents, batch_size=effective_batch_size)
return batch_num, chunk_batch, embeddings_numpy, batch_files, None
except Exception as e:
@@ -614,7 +689,7 @@ def generate_embeddings(
try:
# Generate embeddings
batch_contents = [chunk.content for chunk, _ in chunk_batch]
embeddings_numpy = embedder.embed_to_numpy(batch_contents, batch_size=EMBEDDING_BATCH_SIZE)
embeddings_numpy = embedder.embed_to_numpy(batch_contents, batch_size=effective_batch_size)
# Store embeddings with category
categories = _build_categories_from_batch(chunk_batch)
@@ -1227,6 +1302,14 @@ def generate_dense_embeddings_centralized(
progress_callback(f"Using {endpoint_count} API endpoints with {strategy} strategy")
progress_callback(f"Using model: {embedder.model_name} ({embedder.embedding_dim} dimensions)")
# Calculate dynamic batch size based on model capacity
from codexlens.config import Config
batch_config = Config.load()
effective_batch_size = calculate_dynamic_batch_size(batch_config, embedder)
if progress_callback and batch_config.api_batch_size_dynamic:
progress_callback(f"Dynamic batch size: {effective_batch_size} (model max_tokens={getattr(embedder, 'max_tokens', 8192)})")
except Exception as e:
return {
"success": False,

View File

@@ -170,6 +170,10 @@ class Config:
# API concurrency settings
api_max_workers: int = 4 # Max concurrent API calls for embedding/reranking
api_batch_size: int = 8 # Batch size for API requests
api_batch_size_dynamic: bool = False # Enable dynamic batch size calculation
api_batch_size_utilization_factor: float = 0.8 # Use 80% of model token capacity
api_batch_size_max: int = 2048 # Absolute upper limit for batch size
chars_per_token_estimate: int = 4 # Characters per token estimation ratio
def __post_init__(self) -> None:
try:
@@ -291,6 +295,10 @@ class Config:
"api": {
"max_workers": self.api_max_workers,
"batch_size": self.api_batch_size,
"batch_size_dynamic": self.api_batch_size_dynamic,
"batch_size_utilization_factor": self.api_batch_size_utilization_factor,
"batch_size_max": self.api_batch_size_max,
"chars_per_token_estimate": self.chars_per_token_estimate,
},
}
with open(self.settings_path, "w", encoding="utf-8") as f:
@@ -309,13 +317,16 @@ class Config:
embedding = settings.get("embedding", {})
if "backend" in embedding:
backend = embedding["backend"]
# Support 'api' as alias for 'litellm'
if backend == "api":
backend = "litellm"
if backend in {"fastembed", "litellm"}:
self.embedding_backend = backend
else:
log.warning(
"Invalid embedding backend in %s: %r (expected 'fastembed' or 'litellm')",
self.settings_path,
backend,
embedding["backend"],
)
if "model" in embedding:
self.embedding_model = embedding["model"]
@@ -393,6 +404,14 @@ class Config:
self.api_max_workers = api["max_workers"]
if "batch_size" in api:
self.api_batch_size = api["batch_size"]
if "batch_size_dynamic" in api:
self.api_batch_size_dynamic = api["batch_size_dynamic"]
if "batch_size_utilization_factor" in api:
self.api_batch_size_utilization_factor = api["batch_size_utilization_factor"]
if "batch_size_max" in api:
self.api_batch_size_max = api["batch_size_max"]
if "chars_per_token_estimate" in api:
self.chars_per_token_estimate = api["chars_per_token_estimate"]
except Exception as exc:
log.warning(
"Failed to load settings from %s (%s): %s",
@@ -409,7 +428,7 @@ class Config:
Priority: default → settings.json → .env (highest)
Supported variables:
Supported variables (with or without CODEXLENS_ prefix):
EMBEDDING_MODEL: Override embedding model/profile
EMBEDDING_BACKEND: Override embedding backend (fastembed/litellm)
EMBEDDING_POOL_ENABLED: Enable embedding high availability pool
@@ -428,83 +447,103 @@ class Config:
if not env_vars:
return
def get_env(key: str) -> str | None:
"""Get env var with or without CODEXLENS_ prefix."""
# Check prefixed version first (Dashboard format), then unprefixed
return env_vars.get(f"CODEXLENS_{key}") or env_vars.get(key)
# Embedding overrides
if "EMBEDDING_MODEL" in env_vars:
self.embedding_model = env_vars["EMBEDDING_MODEL"]
embedding_model = get_env("EMBEDDING_MODEL")
if embedding_model:
self.embedding_model = embedding_model
log.debug("Overriding embedding_model from .env: %s", self.embedding_model)
if "EMBEDDING_BACKEND" in env_vars:
backend = env_vars["EMBEDDING_BACKEND"].lower()
embedding_backend = get_env("EMBEDDING_BACKEND")
if embedding_backend:
backend = embedding_backend.lower()
# Support 'api' as alias for 'litellm'
if backend == "api":
backend = "litellm"
if backend in {"fastembed", "litellm"}:
self.embedding_backend = backend
log.debug("Overriding embedding_backend from .env: %s", backend)
else:
log.warning("Invalid EMBEDDING_BACKEND in .env: %r", backend)
log.warning("Invalid EMBEDDING_BACKEND in .env: %r", embedding_backend)
if "EMBEDDING_POOL_ENABLED" in env_vars:
value = env_vars["EMBEDDING_POOL_ENABLED"].lower()
embedding_pool = get_env("EMBEDDING_POOL_ENABLED")
if embedding_pool:
value = embedding_pool.lower()
self.embedding_pool_enabled = value in {"true", "1", "yes", "on"}
log.debug("Overriding embedding_pool_enabled from .env: %s", self.embedding_pool_enabled)
if "EMBEDDING_STRATEGY" in env_vars:
strategy = env_vars["EMBEDDING_STRATEGY"].lower()
embedding_strategy = get_env("EMBEDDING_STRATEGY")
if embedding_strategy:
strategy = embedding_strategy.lower()
if strategy in {"round_robin", "latency_aware", "weighted_random"}:
self.embedding_strategy = strategy
log.debug("Overriding embedding_strategy from .env: %s", strategy)
else:
log.warning("Invalid EMBEDDING_STRATEGY in .env: %r", strategy)
log.warning("Invalid EMBEDDING_STRATEGY in .env: %r", embedding_strategy)
if "EMBEDDING_COOLDOWN" in env_vars:
embedding_cooldown = get_env("EMBEDDING_COOLDOWN")
if embedding_cooldown:
try:
self.embedding_cooldown = float(env_vars["EMBEDDING_COOLDOWN"])
self.embedding_cooldown = float(embedding_cooldown)
log.debug("Overriding embedding_cooldown from .env: %s", self.embedding_cooldown)
except ValueError:
log.warning("Invalid EMBEDDING_COOLDOWN in .env: %r", env_vars["EMBEDDING_COOLDOWN"])
log.warning("Invalid EMBEDDING_COOLDOWN in .env: %r", embedding_cooldown)
# Reranker overrides
if "RERANKER_MODEL" in env_vars:
self.reranker_model = env_vars["RERANKER_MODEL"]
reranker_model = get_env("RERANKER_MODEL")
if reranker_model:
self.reranker_model = reranker_model
log.debug("Overriding reranker_model from .env: %s", self.reranker_model)
if "RERANKER_BACKEND" in env_vars:
backend = env_vars["RERANKER_BACKEND"].lower()
reranker_backend = get_env("RERANKER_BACKEND")
if reranker_backend:
backend = reranker_backend.lower()
if backend in {"fastembed", "onnx", "api", "litellm", "legacy"}:
self.reranker_backend = backend
log.debug("Overriding reranker_backend from .env: %s", backend)
else:
log.warning("Invalid RERANKER_BACKEND in .env: %r", backend)
log.warning("Invalid RERANKER_BACKEND in .env: %r", reranker_backend)
if "RERANKER_ENABLED" in env_vars:
value = env_vars["RERANKER_ENABLED"].lower()
reranker_enabled = get_env("RERANKER_ENABLED")
if reranker_enabled:
value = reranker_enabled.lower()
self.enable_cross_encoder_rerank = value in {"true", "1", "yes", "on"}
log.debug("Overriding reranker_enabled from .env: %s", self.enable_cross_encoder_rerank)
if "RERANKER_POOL_ENABLED" in env_vars:
value = env_vars["RERANKER_POOL_ENABLED"].lower()
reranker_pool = get_env("RERANKER_POOL_ENABLED")
if reranker_pool:
value = reranker_pool.lower()
self.reranker_pool_enabled = value in {"true", "1", "yes", "on"}
log.debug("Overriding reranker_pool_enabled from .env: %s", self.reranker_pool_enabled)
if "RERANKER_STRATEGY" in env_vars:
strategy = env_vars["RERANKER_STRATEGY"].lower()
reranker_strategy = get_env("RERANKER_STRATEGY")
if reranker_strategy:
strategy = reranker_strategy.lower()
if strategy in {"round_robin", "latency_aware", "weighted_random"}:
self.reranker_strategy = strategy
log.debug("Overriding reranker_strategy from .env: %s", strategy)
else:
log.warning("Invalid RERANKER_STRATEGY in .env: %r", strategy)
log.warning("Invalid RERANKER_STRATEGY in .env: %r", reranker_strategy)
if "RERANKER_COOLDOWN" in env_vars:
reranker_cooldown = get_env("RERANKER_COOLDOWN")
if reranker_cooldown:
try:
self.reranker_cooldown = float(env_vars["RERANKER_COOLDOWN"])
self.reranker_cooldown = float(reranker_cooldown)
log.debug("Overriding reranker_cooldown from .env: %s", self.reranker_cooldown)
except ValueError:
log.warning("Invalid RERANKER_COOLDOWN in .env: %r", env_vars["RERANKER_COOLDOWN"])
log.warning("Invalid RERANKER_COOLDOWN in .env: %r", reranker_cooldown)
if "RERANKER_MAX_INPUT_TOKENS" in env_vars:
reranker_max_tokens = get_env("RERANKER_MAX_INPUT_TOKENS")
if reranker_max_tokens:
try:
self.reranker_max_input_tokens = int(env_vars["RERANKER_MAX_INPUT_TOKENS"])
self.reranker_max_input_tokens = int(reranker_max_tokens)
log.debug("Overriding reranker_max_input_tokens from .env: %s", self.reranker_max_input_tokens)
except ValueError:
log.warning("Invalid RERANKER_MAX_INPUT_TOKENS in .env: %r", env_vars["RERANKER_MAX_INPUT_TOKENS"])
log.warning("Invalid RERANKER_MAX_INPUT_TOKENS in .env: %r", reranker_max_tokens)
@classmethod
def load(cls) -> "Config":