mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-05 01:50:27 +08:00
refactor: simplify prompt-enhancer skill description and internal analysis
- Update description: focus on intelligent analysis and session memory - Simplify trigger mechanism to only -e/--enhance flags - Condense internal analysis section to single concise statement - Remove verbose semantic analysis details for cleaner documentation 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
---
|
||||
name: Prompt Enhancer
|
||||
description: Transform vague prompts into actionable specs using session memory ONLY (no file analysis). AUTO-TRIGGER on (1) -e/--enhance flags, (2) vague keywords (fix/improve/refactor/修复/优化/重构), (3) unclear refs (it/that/这个/那个), (4) multi-module scope. Supports English + Chinese semantic recognition.
|
||||
description: Transform vague prompts into actionable specs using intelligent analysis and session memory. Trigger with -e/--enhance flags.
|
||||
allowed-tools: (none)
|
||||
---
|
||||
|
||||
@@ -10,35 +10,9 @@ allowed-tools: (none)
|
||||
|
||||
**Languages**: English + Chinese (中英文语义识别)
|
||||
|
||||
## Triggers
|
||||
|
||||
| Priority | Condition | Examples | Action |
|
||||
|----------|-----------|----------|--------|
|
||||
| **P1** | `-e` / `--enhance` flag | "fix auth -e", "优化性能 --enhance" | Immediate enhancement |
|
||||
| **P2** | Vague keywords | EN: fix/improve/refactor<br>CN: 修复/优化/重构/更新/改进 | Semantic analysis |
|
||||
| **P3** | Unclear references | EN: it/that/the code<br>CN: 这个/那个/它/代码 | Context extraction |
|
||||
| **P4** | Multi-module scope | >3 modules or critical systems | Dependency analysis |
|
||||
|
||||
## Process (Internal → Direct Output)
|
||||
|
||||
**Internal Analysis (Silent)**:
|
||||
|
||||
1. **Semantic Analysis**
|
||||
- Intent keywords (EN/CN): fix/修复, improve/优化, add/添加, refactor/重构
|
||||
- Scope identification: file → module → system
|
||||
- Domain mapping: auth/API/DB/UI/Performance
|
||||
|
||||
2. **Memory Extraction** (NO File Reading)
|
||||
- Recent user requests and context
|
||||
- Tech stack mentioned in session (frameworks, libraries, patterns)
|
||||
- Design patterns discussed or implied
|
||||
- User preferences and constraints
|
||||
- Known dependencies from conversation
|
||||
|
||||
3. **Enhancement Dimensions**
|
||||
- **Structure**: Convert to INTENT/CONTEXT/ACTION/ATTENTION format
|
||||
- **Supplement**: Add tech stack, design patterns, testing requirements
|
||||
- **Clarify**: Make intent explicit, resolve ambiguous references
|
||||
**Internal Analysis**: Intelligently extract session context, identify tech stack, and structure into actionable format.
|
||||
|
||||
**Output**: Direct structured prompt (no intermediate steps shown)
|
||||
|
||||
@@ -66,18 +40,6 @@ ATTENTION: [Critical constraints / 关键约束]
|
||||
- [Security/compatibility/performance concerns]
|
||||
- [Design pattern requirements]
|
||||
```
|
||||
|
||||
## Semantic Patterns (EN + CN)
|
||||
|
||||
| Intent (EN/CN) | Semantic Meaning | Enhancement Focus |
|
||||
|----------------|------------------|-------------------|
|
||||
| fix/修复 + vague target | Debug & resolve | Root cause + tech stack + testing |
|
||||
| improve/优化 + no metrics | Enhance/optimize | Performance metrics + patterns + benchmarks |
|
||||
| add/添加 + feature | Implement feature | Integration points + edge cases + tests |
|
||||
| refactor/重构 + module | Restructure | Design patterns + backward compatibility |
|
||||
| update/更新 + version | Modernize | Migration path + breaking changes |
|
||||
| clean up/清理 + area | Simplify/organize | Code quality patterns + tech debt |
|
||||
|
||||
## Workflow
|
||||
|
||||
```
|
||||
@@ -134,87 +96,3 @@ Trigger → Internal Analysis → Direct Output
|
||||
3. **Added tech stack section** - Supplement with technologies
|
||||
4. **Enhanced internal analysis** - 3 dimensions (structure + supplement + clarify)
|
||||
5. **Focus on memory** - Session context only, no file reading
|
||||
|
||||
## Examples
|
||||
|
||||
### Example 1: Vague Fix Request
|
||||
|
||||
**Input**: "fix auth -e" / "修复认证 --enhance"
|
||||
|
||||
**Internal Analysis**:
|
||||
- Semantic: "fix/修复" → debug intent
|
||||
- Memory: Recent mention of JWT, token expiration issues
|
||||
- Tech stack: JWT, Express.js middleware (from session)
|
||||
- Enhancement: Add testing, security patterns
|
||||
|
||||
**Output**:
|
||||
```
|
||||
📋 ENHANCED PROMPT
|
||||
|
||||
INTENT: Fix authentication token expiration handling in JWT-based auth system
|
||||
|
||||
TECH STACK:
|
||||
- JWT: Token generation and validation
|
||||
- Express.js: Middleware implementation
|
||||
- Jest: Unit testing framework
|
||||
|
||||
CONTEXT:
|
||||
- User reported token expiration issues in previous conversation
|
||||
- Session indicates JWT-based authentication system
|
||||
- Preference for backward compatibility with existing tokens
|
||||
|
||||
ACTION:
|
||||
1. Analyze JWT token lifecycle and expiration validation logic
|
||||
2. Implement proper token refresh mechanism with sliding expiration
|
||||
3. Add middleware for token validation with detailed error handling
|
||||
4. Write unit tests for token expiration and refresh scenarios
|
||||
5. Update API documentation for token refresh endpoints
|
||||
|
||||
ATTENTION:
|
||||
- Must maintain backward compatibility with existing valid tokens
|
||||
- Security: Follow JWT best practices (HS256/RS256, secure secret storage)
|
||||
- Testing: Cover edge cases (expired, malformed, missing tokens)
|
||||
- Performance: Consider token validation caching for high-traffic endpoints
|
||||
```
|
||||
|
||||
### Example 2: Vague Optimization Request
|
||||
|
||||
**Input**: "optimize performance --enhance" / "优化性能 -e"
|
||||
|
||||
**Internal Analysis**:
|
||||
- Semantic: "optimize/优化" → performance intent
|
||||
- Memory: Previous discussion about API response times, React rendering
|
||||
- Tech stack: React, Node.js, PostgreSQL (from session)
|
||||
- Enhancement: Add metrics, profiling, specific optimizations
|
||||
|
||||
**Output**:
|
||||
```
|
||||
📋 ENHANCED PROMPT
|
||||
|
||||
INTENT: Optimize API response times and React component rendering performance
|
||||
|
||||
TECH STACK:
|
||||
- React: Component optimization (memo, useMemo, useCallback)
|
||||
- Node.js: API endpoint optimization
|
||||
- PostgreSQL: Query optimization and indexing
|
||||
|
||||
CONTEXT:
|
||||
- User mentioned slow API responses (>2s) in previous conversation
|
||||
- React app shows rendering performance issues on large lists
|
||||
- PostgreSQL database queries identified as bottleneck
|
||||
|
||||
ACTION:
|
||||
1. Profile API endpoints using Node.js profiler to identify slow queries
|
||||
2. Optimize PostgreSQL queries with proper indexing and query analysis (EXPLAIN)
|
||||
3. Implement React.memo for expensive list components
|
||||
4. Add useMemo/useCallback for derived data and event handlers
|
||||
5. Implement pagination/virtualization for large data lists
|
||||
6. Add performance monitoring with metrics (response time, render time)
|
||||
7. Write performance benchmarks and regression tests
|
||||
|
||||
ATTENTION:
|
||||
- Metrics: Target <500ms API response, <100ms render time
|
||||
- Patterns: Use React.memo judiciously (avoid over-optimization)
|
||||
- Testing: Add performance regression tests with benchmarks
|
||||
- Compatibility: Ensure optimizations don't break existing functionality
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user