feat: 添加全局环境变量加载功能并更新配置说明

This commit is contained in:
catlog22
2026-01-03 15:14:45 +08:00
parent f674b90a62
commit bab5625123
6 changed files with 422 additions and 21 deletions

View File

@@ -1,10 +1,15 @@
# CodexLens Environment Configuration
# Copy this file to .codexlens/.env and fill in your values
#
# Priority order:
# 1. Environment variables (already set in shell)
# 2. .codexlens/.env (workspace-local, this file)
#
# Configuration locations (copy to one of these):
# - ~/.codexlens/.env (global, applies to all projects)
# - project/.codexlens/.env (workspace-local)
# - project/.env (project root)
#
# Priority order (later overrides earlier):
# 1. Environment variables (already set in shell) - highest
# 2. .codexlens/.env (workspace-local)
# 3. .env (project root)
# 4. ~/.codexlens/.env (global) - lowest
# ============================================
# RERANKER Configuration

View File

@@ -0,0 +1,265 @@
# CodexLens 配置说明
## 目录结构
```
~/.codexlens/ # 全局数据目录
├── .env # 全局 API 配置 (新增)
├── settings.json # 运行时设置
├── embedding_lock.json # 模型锁定文件
├── registry.db # 项目注册表
├── indexes/ # 集中式索引存储
└── venv/ # Python 虚拟环境
project/
├── .codexlens/ # 工作区本地目录
│ ├── .env # 工作区 API 配置 (覆盖全局)
│ ├── index.db # 项目索引数据库
│ ├── cache/ # 缓存目录
│ └── .gitignore # 排除敏感文件
└── .env # 项目根目录配置
```
## 配置优先级
配置加载顺序 (后者覆盖前者):
| 优先级 | 位置 | 说明 |
|--------|------|------|
| 1 (最低) | `~/.codexlens/.env` | 全局默认配置 |
| 2 | `project/.env` | 项目根目录配置 |
| 3 | `project/.codexlens/.env` | 工作区本地配置 |
| 4 (最高) | 环境变量 | Shell 环境变量 |
## 环境变量
### Embedding 配置
用于 `litellm` 后端的嵌入向量服务:
```bash
# API 密钥
EMBEDDING_API_KEY=your-api-key
# API 基础 URL
EMBEDDING_API_BASE=https://api.example.com/v1
# 嵌入模型名称
EMBEDDING_MODEL=text-embedding-3-small
```
**支持的提供商示例**:
| 提供商 | API Base | 模型示例 |
|--------|----------|----------|
| OpenAI | `https://api.openai.com/v1` | `text-embedding-3-small` |
| ModelScope | `https://api-inference.modelscope.cn/v1` | `Qwen/Qwen3-Embedding-8B` |
| Azure | `https://your-resource.openai.azure.com` | `text-embedding-ada-002` |
### LiteLLM 配置
用于 LLM 功能 (重排序、语义分析等):
```bash
# API 密钥
LITELLM_API_KEY=your-api-key
# API 基础 URL
LITELLM_API_BASE=https://api.example.com/v1
# 模型名称
LITELLM_MODEL=gpt-4o-mini
```
### Reranker 配置
用于搜索结果重排序 (可选):
```bash
# API 密钥
RERANKER_API_KEY=your-api-key
# API 基础 URL
RERANKER_API_BASE=https://api.siliconflow.cn
# 提供商: siliconflow, cohere, jina
RERANKER_PROVIDER=siliconflow
# 重排序模型
RERANKER_MODEL=BAAI/bge-reranker-v2-m3
```
### 通用配置
```bash
# 自定义数据目录 (默认: ~/.codexlens)
CODEXLENS_DATA_DIR=~/.codexlens
# 启用调试模式
CODEXLENS_DEBUG=false
```
## settings.json
运行时设置保存在 `~/.codexlens/settings.json`:
```json
{
"embedding": {
"backend": "litellm",
"model": "Qwen/Qwen3-Embedding-8B",
"use_gpu": false,
"endpoints": [
{
"model": "Qwen/Qwen3-Embedding-8B",
"api_key": "${EMBEDDING_API_KEY}",
"api_base": "${EMBEDDING_API_BASE}",
"weight": 1.0
}
],
"strategy": "latency_aware",
"cooldown": 60.0
},
"llm": {
"enabled": true,
"tool": "gemini",
"timeout_ms": 300000,
"batch_size": 5
}
}
```
### Embedding 设置
| 字段 | 类型 | 说明 |
|------|------|------|
| `backend` | string | `fastembed` (本地) 或 `litellm` (API) |
| `model` | string | 模型名称或配置文件 |
| `use_gpu` | bool | GPU 加速 (仅 fastembed) |
| `endpoints` | array | 多端点配置 (仅 litellm) |
| `strategy` | string | 负载均衡策略 |
| `cooldown` | float | 限流冷却时间 (秒) |
**Embedding Backend 对比**:
| 特性 | fastembed | litellm |
|------|-----------|---------|
| 运行方式 | 本地 ONNX | API 调用 |
| 依赖 | 本地模型文件 | API 密钥 |
| 速度 | 快 (本地) | 取决于网络 |
| 模型选择 | 预定义配置文件 | 任意 API 模型 |
| GPU 支持 | 是 | N/A |
**负载均衡策略**:
| 策略 | 说明 |
|------|------|
| `round_robin` | 轮询分配 |
| `latency_aware` | 延迟感知 (推荐) |
| `weighted_random` | 加权随机 |
### LLM 设置
| 字段 | 类型 | 说明 |
|------|------|------|
| `enabled` | bool | 启用 LLM 功能 |
| `tool` | string | LLM 工具 (`gemini`, `codex`) |
| `timeout_ms` | int | 超时时间 (毫秒) |
| `batch_size` | int | 批处理大小 |
## FastEmbed 模型配置文件
使用 `fastembed` 后端时的预定义模型:
| 配置文件 | 模型 | 维度 | 大小 |
|----------|------|------|------|
| `fast` | BAAI/bge-small-en-v1.5 | 384 | 80MB |
| `base` | BAAI/bge-base-en-v1.5 | 768 | 220MB |
| `code` | jinaai/jina-embeddings-v2-base-code | 768 | 150MB |
| `minilm` | sentence-transformers/all-MiniLM-L6-v2 | 384 | 90MB |
| `multilingual` | intfloat/multilingual-e5-large | 1024 | 1000MB |
| `balanced` | mixedbread-ai/mxbai-embed-large-v1 | 1024 | 600MB |
## 快速开始
### 1. 使用全局配置
创建 `~/.codexlens/.env`:
```bash
# 复制示例配置
cp codex-lens/.env.example ~/.codexlens/.env
# 编辑配置
nano ~/.codexlens/.env
```
### 2. 使用本地嵌入 (fastembed)
```bash
# 初始化索引 (使用 code 配置文件)
codexlens init --backend fastembed --model code
# 或使用多语言模型
codexlens init --backend fastembed --model multilingual
```
### 3. 使用 API 嵌入 (litellm)
```bash
# 设置环境变量
export EMBEDDING_API_KEY=your-key
export EMBEDDING_API_BASE=https://api.example.com/v1
export EMBEDDING_MODEL=text-embedding-3-small
# 初始化索引
codexlens init --backend litellm --model text-embedding-3-small
```
### 4. 验证配置
```bash
# 检查配置加载
codexlens config show
# 测试嵌入
codexlens test-embedding "Hello World"
```
## 故障排除
### 配置未加载
检查文件权限和路径:
```bash
ls -la ~/.codexlens/.env
cat ~/.codexlens/.env
```
### API 错误
1. 验证 API 密钥有效性
2. 检查 API Base URL 是否正确
3. 确认模型名称匹配提供商支持的模型
### 模型不兼容
如果更换嵌入模型,需要重建索引:
```bash
# 删除旧索引
rm -rf project/.codexlens/
# 重新初始化
codexlens init --backend litellm --model new-model
```
## 相关文件
| 文件 | 说明 |
|------|------|
| `src/codexlens/config.py` | 配置类定义 |
| `src/codexlens/env_config.py` | 环境变量加载 |
| `src/codexlens/cli/model_manager.py` | FastEmbed 模型管理 |
| `src/codexlens/semantic/factory.py` | Embedder 工厂 |

View File

@@ -527,8 +527,8 @@ def search(
console.print("[dim]Use --method with: fts, vector, splade, hybrid, cascade[/dim]")
raise typer.Exit(code=1)
# Configure search
config = Config()
# Configure search (load settings from file)
config = Config.load()
# Validate method
valid_methods = ["fts", "vector", "splade", "hybrid", "cascade"]

View File

@@ -265,6 +265,12 @@ class Config:
"timeout_ms": self.llm_timeout_ms,
"batch_size": self.llm_batch_size,
},
"reranker": {
"enabled": self.enable_cross_encoder_rerank,
"backend": self.reranker_backend,
"model": self.reranker_model,
"top_k": self.reranker_top_k,
},
}
with open(self.settings_path, "w", encoding="utf-8") as f:
json.dump(settings, f, indent=2)
@@ -313,6 +319,25 @@ class Config:
self.llm_timeout_ms = llm["timeout_ms"]
if "batch_size" in llm:
self.llm_batch_size = llm["batch_size"]
# Load reranker settings
reranker = settings.get("reranker", {})
if "enabled" in reranker:
self.enable_cross_encoder_rerank = reranker["enabled"]
if "backend" in reranker:
backend = reranker["backend"]
if backend in {"onnx", "api", "litellm", "legacy"}:
self.reranker_backend = backend
else:
log.warning(
"Invalid reranker backend in %s: %r (expected 'onnx', 'api', 'litellm', or 'legacy')",
self.settings_path,
backend,
)
if "model" in reranker:
self.reranker_model = reranker["model"]
if "top_k" in reranker:
self.reranker_top_k = reranker["top_k"]
except Exception as exc:
log.warning(
"Failed to load settings from %s (%s): %s",

View File

@@ -95,39 +95,68 @@ def load_env_file(env_path: Path) -> Dict[str, str]:
return env_vars
def _get_global_data_dir() -> Path:
"""Get global CodexLens data directory."""
env_override = os.environ.get("CODEXLENS_DATA_DIR")
if env_override:
return Path(env_override).expanduser().resolve()
return (Path.home() / ".codexlens").resolve()
def load_global_env() -> Dict[str, str]:
"""Load environment variables from global ~/.codexlens/.env file.
Returns:
Dictionary of environment variables from global config
"""
global_env_path = _get_global_data_dir() / ".env"
if global_env_path.is_file():
env_vars = load_env_file(global_env_path)
log.debug("Loaded %d vars from global %s", len(env_vars), global_env_path)
return env_vars
return {}
def load_workspace_env(workspace_root: Path | None = None) -> Dict[str, str]:
"""Load environment variables from workspace .env files.
Priority (later overrides earlier):
1. Project root .env
2. .codexlens/.env
1. Global ~/.codexlens/.env (lowest priority)
2. Project root .env
3. .codexlens/.env (highest priority)
Args:
workspace_root: Workspace root directory. If None, uses current directory.
Returns:
Merged dictionary of environment variables
"""
if workspace_root is None:
workspace_root = Path.cwd()
workspace_root = Path(workspace_root).resolve()
env_vars: Dict[str, str] = {}
# Load from project root .env (lowest priority)
# Load from global ~/.codexlens/.env (lowest priority)
global_vars = load_global_env()
if global_vars:
env_vars.update(global_vars)
# Load from project root .env (medium priority)
root_env = workspace_root / ".env"
if root_env.is_file():
env_vars.update(load_env_file(root_env))
log.debug("Loaded %d vars from %s", len(env_vars), root_env)
# Load from .codexlens/.env (higher priority)
loaded = load_env_file(root_env)
env_vars.update(loaded)
log.debug("Loaded %d vars from %s", len(loaded), root_env)
# Load from .codexlens/.env (highest priority)
codexlens_env = workspace_root / ".codexlens" / ".env"
if codexlens_env.is_file():
loaded = load_env_file(codexlens_env)
env_vars.update(loaded)
log.debug("Loaded %d vars from %s", len(loaded), codexlens_env)
return env_vars

77
compare_reranker.py Normal file
View File

@@ -0,0 +1,77 @@
#!/usr/bin/env python
"""Compare search results with and without reranker."""
import json
import subprocess
import sys
import os
os.chdir(r"D:\dongdiankaifa9\hydro_generator_module")
query = "热网络计算"
def run_search(method: str) -> dict:
"""Run search and return parsed JSON result."""
cmd = [sys.executable, "-m", "codexlens", "search", query, "--method", method, "--limit", "10", "--json"]
result = subprocess.run(cmd, capture_output=True, text=True, encoding="utf-8")
# Find JSON in output (skip debug lines)
for line in result.stdout.split("\n"):
if line.strip().startswith("{"):
try:
return json.loads(line)
except:
pass
# Try to find JSON object in stderr
output = result.stdout + result.stderr
start = output.find('{"success"')
if start >= 0:
# Find matching closing brace
depth = 0
for i, c in enumerate(output[start:]):
if c == '{':
depth += 1
elif c == '}':
depth -= 1
if depth == 0:
try:
return json.loads(output[start:start+i+1])
except:
pass
break
return {"success": False, "error": "Failed to parse JSON"}
print("=" * 60)
print("搜索对比: 有无 Reranker 效果")
print("查询:", query)
print("=" * 60)
# Run hybrid search (no reranker)
print("\n[1] Hybrid 搜索 (无 Reranker)")
print("-" * 40)
hybrid_result = run_search("hybrid")
if hybrid_result.get("success"):
results = hybrid_result.get("result", {}).get("results", [])[:10]
for i, r in enumerate(results, 1):
path = r.get("path", "").split("\\")[-1]
score = r.get("score", 0)
print(f"{i:2}. {path[:45]:<45} score={score:.4f}")
else:
print("搜索失败:", hybrid_result.get("error"))
# Run cascade search (with reranker)
print("\n[2] Cascade 搜索 (使用 Reranker)")
print("-" * 40)
cascade_result = run_search("cascade")
if cascade_result.get("success"):
results = cascade_result.get("result", {}).get("results", [])[:10]
for i, r in enumerate(results, 1):
path = r.get("path", "").split("\\")[-1]
score = r.get("score", 0)
print(f"{i:2}. {path[:45]:<45} score={score:.4f}")
else:
print("搜索失败:", cascade_result.get("error"))
print("\n" + "=" * 60)
print("对比说明:")
print("- Hybrid: FTS + Vector 融合,无二次重排序")
print("- Cascade: Vector 粗筛 + Reranker API 精排")
print("=" * 60)