feat: Add unified LiteLLM API management with dashboard UI and CLI integration

- Create ccw-litellm Python package with AbstractEmbedder and AbstractLLMClient interfaces
- Add BaseEmbedder abstraction and factory pattern to codex-lens for pluggable backends
- Implement API Settings dashboard page for provider credentials and custom endpoints
- Add REST API routes for CRUD operations on providers and endpoints
- Extend CLI with --model parameter for custom endpoint routing
- Integrate existing context-cache for @pattern file resolution
- Add provider model registry with predefined models per provider type
- Include i18n translations (en/zh) for all new UI elements

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
catlog22
2025-12-23 20:36:32 +08:00
parent 5228581324
commit bf66b095c7
44 changed files with 4948 additions and 19 deletions

180
ccw-litellm/README.md Normal file
View File

@@ -0,0 +1,180 @@
# ccw-litellm
Unified LiteLLM interface layer shared by ccw and codex-lens projects.
## Features
- **Unified LLM Interface**: Abstract interface for LLM operations (chat, completion)
- **Unified Embedding Interface**: Abstract interface for text embeddings
- **Multi-Provider Support**: OpenAI, Anthropic, Azure, and more via LiteLLM
- **Configuration Management**: YAML-based configuration with environment variable substitution
- **Type Safety**: Full type annotations with Pydantic models
## Installation
```bash
pip install -e .
```
## Quick Start
### Configuration
Create a configuration file at `~/.ccw/config/litellm-config.yaml`:
```yaml
version: 1
default_provider: openai
providers:
openai:
api_key: ${OPENAI_API_KEY}
api_base: https://api.openai.com/v1
llm_models:
default:
provider: openai
model: gpt-4
embedding_models:
default:
provider: openai
model: text-embedding-3-small
dimensions: 1536
```
### Usage
#### LLM Client
```python
from ccw_litellm import LiteLLMClient, ChatMessage
# Initialize client with default model
client = LiteLLMClient(model="default")
# Chat completion
messages = [
ChatMessage(role="user", content="Hello, how are you?")
]
response = client.chat(messages)
print(response.content)
# Text completion
response = client.complete("Once upon a time")
print(response.content)
```
#### Embedder
```python
from ccw_litellm import LiteLLMEmbedder
# Initialize embedder with default model
embedder = LiteLLMEmbedder(model="default")
# Embed single text
vector = embedder.embed("Hello world")
print(vector.shape) # (1, 1536)
# Embed multiple texts
vectors = embedder.embed(["Text 1", "Text 2", "Text 3"])
print(vectors.shape) # (3, 1536)
```
#### Custom Configuration
```python
from ccw_litellm import LiteLLMClient, load_config
# Load custom configuration
config = load_config("/path/to/custom-config.yaml")
# Use custom configuration
client = LiteLLMClient(model="fast", config=config)
```
## Configuration Reference
### Provider Configuration
```yaml
providers:
<provider_name>:
api_key: <api_key_or_${ENV_VAR}>
api_base: <base_url>
```
Supported providers: `openai`, `anthropic`, `azure`, `vertex_ai`, `bedrock`, etc.
### LLM Model Configuration
```yaml
llm_models:
<model_name>:
provider: <provider_name>
model: <model_identifier>
```
### Embedding Model Configuration
```yaml
embedding_models:
<model_name>:
provider: <provider_name>
model: <model_identifier>
dimensions: <embedding_dimensions>
```
## Environment Variables
The configuration supports environment variable substitution using the `${VAR}` or `${VAR:-default}` syntax:
```yaml
providers:
openai:
api_key: ${OPENAI_API_KEY} # Required
api_base: ${OPENAI_API_BASE:-https://api.openai.com/v1} # With default
```
## API Reference
### Interfaces
- `AbstractLLMClient`: Abstract base class for LLM clients
- `AbstractEmbedder`: Abstract base class for embedders
- `ChatMessage`: Message data class (role, content)
- `LLMResponse`: Response data class (content, raw)
### Implementations
- `LiteLLMClient`: LiteLLM implementation of AbstractLLMClient
- `LiteLLMEmbedder`: LiteLLM implementation of AbstractEmbedder
### Configuration
- `LiteLLMConfig`: Root configuration model
- `ProviderConfig`: Provider configuration model
- `LLMModelConfig`: LLM model configuration model
- `EmbeddingModelConfig`: Embedding model configuration model
- `load_config(path)`: Load configuration from YAML file
- `get_config(path, reload)`: Get global configuration singleton
- `reset_config()`: Reset global configuration (for testing)
## Development
### Running Tests
```bash
pytest tests/ -v
```
### Type Checking
```bash
mypy src/ccw_litellm
```
## License
MIT

View File

@@ -0,0 +1,53 @@
# LiteLLM Unified Configuration
# Copy to ~/.ccw/config/litellm-config.yaml
version: 1
# Default provider for LLM calls
default_provider: openai
# Provider configurations
providers:
openai:
api_key: ${OPENAI_API_KEY}
api_base: https://api.openai.com/v1
anthropic:
api_key: ${ANTHROPIC_API_KEY}
ollama:
api_base: http://localhost:11434
azure:
api_key: ${AZURE_API_KEY}
api_base: ${AZURE_API_BASE}
# LLM model configurations
llm_models:
default:
provider: openai
model: gpt-4o
fast:
provider: openai
model: gpt-4o-mini
claude:
provider: anthropic
model: claude-sonnet-4-20250514
local:
provider: ollama
model: llama3.2
# Embedding model configurations
embedding_models:
default:
provider: openai
model: text-embedding-3-small
dimensions: 1536
large:
provider: openai
model: text-embedding-3-large
dimensions: 3072
ada:
provider: openai
model: text-embedding-ada-002
dimensions: 1536

View File

@@ -0,0 +1,35 @@
[build-system]
requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta"
[project]
name = "ccw-litellm"
version = "0.1.0"
description = "Unified LiteLLM interface layer shared by ccw and codex-lens"
requires-python = ">=3.10"
authors = [{ name = "ccw-litellm contributors" }]
dependencies = [
"litellm>=1.0.0",
"pyyaml",
"numpy",
"pydantic>=2.0",
]
[project.optional-dependencies]
dev = [
"pytest>=7.0",
]
[project.scripts]
ccw-litellm = "ccw_litellm.cli:main"
[tool.setuptools]
package-dir = { "" = "src" }
[tool.setuptools.packages.find]
where = ["src"]
include = ["ccw_litellm*"]
[tool.pytest.ini_options]
testpaths = ["tests"]
addopts = "-q"

View File

@@ -0,0 +1,12 @@
Metadata-Version: 2.4
Name: ccw-litellm
Version: 0.1.0
Summary: Unified LiteLLM interface layer shared by ccw and codex-lens
Author: ccw-litellm contributors
Requires-Python: >=3.10
Requires-Dist: litellm>=1.0.0
Requires-Dist: pyyaml
Requires-Dist: numpy
Requires-Dist: pydantic>=2.0
Provides-Extra: dev
Requires-Dist: pytest>=7.0; extra == "dev"

View File

@@ -0,0 +1,17 @@
pyproject.toml
src/ccw_litellm/__init__.py
src/ccw_litellm.egg-info/PKG-INFO
src/ccw_litellm.egg-info/SOURCES.txt
src/ccw_litellm.egg-info/dependency_links.txt
src/ccw_litellm.egg-info/requires.txt
src/ccw_litellm.egg-info/top_level.txt
src/ccw_litellm/clients/__init__.py
src/ccw_litellm/clients/litellm_embedder.py
src/ccw_litellm/clients/litellm_llm.py
src/ccw_litellm/config/__init__.py
src/ccw_litellm/config/loader.py
src/ccw_litellm/config/models.py
src/ccw_litellm/interfaces/__init__.py
src/ccw_litellm/interfaces/embedder.py
src/ccw_litellm/interfaces/llm.py
tests/test_interfaces.py

View File

@@ -0,0 +1 @@

View File

@@ -0,0 +1,7 @@
litellm>=1.0.0
pyyaml
numpy
pydantic>=2.0
[dev]
pytest>=7.0

View File

@@ -0,0 +1 @@
ccw_litellm

View File

@@ -0,0 +1,47 @@
"""ccw-litellm package.
This package provides a small, stable interface layer around LiteLLM to share
between the ccw and codex-lens projects.
"""
from __future__ import annotations
from .clients import LiteLLMClient, LiteLLMEmbedder
from .config import (
EmbeddingModelConfig,
LiteLLMConfig,
LLMModelConfig,
ProviderConfig,
get_config,
load_config,
reset_config,
)
from .interfaces import (
AbstractEmbedder,
AbstractLLMClient,
ChatMessage,
LLMResponse,
)
__version__ = "0.1.0"
__all__ = [
"__version__",
# Abstract interfaces
"AbstractEmbedder",
"AbstractLLMClient",
"ChatMessage",
"LLMResponse",
# Client implementations
"LiteLLMClient",
"LiteLLMEmbedder",
# Configuration
"LiteLLMConfig",
"ProviderConfig",
"LLMModelConfig",
"EmbeddingModelConfig",
"load_config",
"get_config",
"reset_config",
]

View File

@@ -0,0 +1,108 @@
"""CLI entry point for ccw-litellm."""
from __future__ import annotations
import argparse
import json
import sys
from pathlib import Path
def main() -> int:
"""Main CLI entry point."""
parser = argparse.ArgumentParser(
prog="ccw-litellm",
description="Unified LiteLLM interface for ccw and codex-lens",
)
subparsers = parser.add_subparsers(dest="command", help="Available commands")
# config command
config_parser = subparsers.add_parser("config", help="Show configuration")
config_parser.add_argument(
"--path",
type=Path,
help="Configuration file path",
)
# embed command
embed_parser = subparsers.add_parser("embed", help="Generate embeddings")
embed_parser.add_argument("texts", nargs="+", help="Texts to embed")
embed_parser.add_argument(
"--model",
default="default",
help="Embedding model name (default: default)",
)
embed_parser.add_argument(
"--output",
choices=["json", "shape"],
default="shape",
help="Output format (default: shape)",
)
# chat command
chat_parser = subparsers.add_parser("chat", help="Chat with LLM")
chat_parser.add_argument("message", help="Message to send")
chat_parser.add_argument(
"--model",
default="default",
help="LLM model name (default: default)",
)
# version command
subparsers.add_parser("version", help="Show version")
args = parser.parse_args()
if args.command == "version":
from . import __version__
print(f"ccw-litellm {__version__}")
return 0
if args.command == "config":
from .config import get_config
try:
config = get_config(config_path=args.path if hasattr(args, "path") else None)
print(config.model_dump_json(indent=2))
except Exception as e:
print(f"Error loading config: {e}", file=sys.stderr)
return 1
return 0
if args.command == "embed":
from .clients import LiteLLMEmbedder
try:
embedder = LiteLLMEmbedder(model=args.model)
vectors = embedder.embed(args.texts)
if args.output == "json":
print(json.dumps(vectors.tolist()))
else:
print(f"Shape: {vectors.shape}")
print(f"Dimensions: {embedder.dimensions}")
except Exception as e:
print(f"Error: {e}", file=sys.stderr)
return 1
return 0
if args.command == "chat":
from .clients import LiteLLMClient
from .interfaces import ChatMessage
try:
client = LiteLLMClient(model=args.model)
response = client.chat([ChatMessage(role="user", content=args.message)])
print(response.content)
except Exception as e:
print(f"Error: {e}", file=sys.stderr)
return 1
return 0
parser.print_help()
return 0
if __name__ == "__main__":
sys.exit(main())

View File

@@ -0,0 +1,12 @@
"""Client implementations for ccw-litellm."""
from __future__ import annotations
from .litellm_embedder import LiteLLMEmbedder
from .litellm_llm import LiteLLMClient
__all__ = [
"LiteLLMClient",
"LiteLLMEmbedder",
]

View File

@@ -0,0 +1,170 @@
"""LiteLLM embedder implementation for text embeddings."""
from __future__ import annotations
import logging
from typing import Any, Sequence
import litellm
import numpy as np
from numpy.typing import NDArray
from ..config import LiteLLMConfig, get_config
from ..interfaces.embedder import AbstractEmbedder
logger = logging.getLogger(__name__)
class LiteLLMEmbedder(AbstractEmbedder):
"""LiteLLM embedder implementation.
Supports multiple embedding providers (OpenAI, etc.) through LiteLLM's unified interface.
Example:
embedder = LiteLLMEmbedder(model="default")
vectors = embedder.embed(["Hello world", "Another text"])
print(vectors.shape) # (2, 1536)
"""
def __init__(
self,
model: str = "default",
config: LiteLLMConfig | None = None,
**litellm_kwargs: Any,
) -> None:
"""Initialize LiteLLM embedder.
Args:
model: Model name from configuration (default: "default")
config: Configuration instance (default: use global config)
**litellm_kwargs: Additional arguments to pass to litellm.embedding()
"""
self._config = config or get_config()
self._model_name = model
self._litellm_kwargs = litellm_kwargs
# Get embedding model configuration
try:
self._model_config = self._config.get_embedding_model(model)
except ValueError as e:
logger.error(f"Failed to get embedding model configuration: {e}")
raise
# Get provider configuration
try:
self._provider_config = self._config.get_provider(self._model_config.provider)
except ValueError as e:
logger.error(f"Failed to get provider configuration: {e}")
raise
# Set up LiteLLM environment
self._setup_litellm()
def _setup_litellm(self) -> None:
"""Configure LiteLLM with provider settings."""
provider = self._model_config.provider
# Set API key
if self._provider_config.api_key:
litellm.api_key = self._provider_config.api_key
# Also set environment-specific keys
if provider == "openai":
litellm.openai_key = self._provider_config.api_key
elif provider == "anthropic":
litellm.anthropic_key = self._provider_config.api_key
# Set API base
if self._provider_config.api_base:
litellm.api_base = self._provider_config.api_base
def _format_model_name(self) -> str:
"""Format model name for LiteLLM.
Returns:
Formatted model name (e.g., "text-embedding-3-small")
"""
provider = self._model_config.provider
model = self._model_config.model
# For some providers, LiteLLM expects explicit prefix
if provider in ["azure", "vertex_ai", "bedrock"]:
return f"{provider}/{model}"
return model
@property
def dimensions(self) -> int:
"""Embedding vector size."""
return self._model_config.dimensions
def embed(
self,
texts: str | Sequence[str],
*,
batch_size: int | None = None,
**kwargs: Any,
) -> NDArray[np.floating]:
"""Embed one or more texts.
Args:
texts: Single text or sequence of texts
batch_size: Batch size for processing (currently unused, LiteLLM handles batching)
**kwargs: Additional arguments for litellm.embedding()
Returns:
A numpy array of shape (n_texts, dimensions).
Raises:
Exception: If LiteLLM embedding fails
"""
# Normalize input to list
if isinstance(texts, str):
text_list = [texts]
single_input = True
else:
text_list = list(texts)
single_input = False
if not text_list:
# Return empty array with correct shape
return np.empty((0, self.dimensions), dtype=np.float32)
# Merge kwargs
embedding_kwargs = {**self._litellm_kwargs, **kwargs}
try:
# Call LiteLLM embedding
response = litellm.embedding(
model=self._format_model_name(),
input=text_list,
**embedding_kwargs,
)
# Extract embeddings
embeddings = [item["embedding"] for item in response.data]
# Convert to numpy array
result = np.array(embeddings, dtype=np.float32)
# Validate dimensions
if result.shape[1] != self.dimensions:
logger.warning(
f"Expected {self.dimensions} dimensions, got {result.shape[1]}. "
f"Configuration may be incorrect."
)
return result
except Exception as e:
logger.error(f"LiteLLM embedding failed: {e}")
raise
@property
def model_name(self) -> str:
"""Get configured model name."""
return self._model_name
@property
def provider(self) -> str:
"""Get configured provider name."""
return self._model_config.provider

View File

@@ -0,0 +1,165 @@
"""LiteLLM client implementation for LLM operations."""
from __future__ import annotations
import logging
from typing import Any, Sequence
import litellm
from ..config import LiteLLMConfig, get_config
from ..interfaces.llm import AbstractLLMClient, ChatMessage, LLMResponse
logger = logging.getLogger(__name__)
class LiteLLMClient(AbstractLLMClient):
"""LiteLLM client implementation.
Supports multiple providers (OpenAI, Anthropic, etc.) through LiteLLM's unified interface.
Example:
client = LiteLLMClient(model="default")
response = client.chat([
ChatMessage(role="user", content="Hello!")
])
print(response.content)
"""
def __init__(
self,
model: str = "default",
config: LiteLLMConfig | None = None,
**litellm_kwargs: Any,
) -> None:
"""Initialize LiteLLM client.
Args:
model: Model name from configuration (default: "default")
config: Configuration instance (default: use global config)
**litellm_kwargs: Additional arguments to pass to litellm.completion()
"""
self._config = config or get_config()
self._model_name = model
self._litellm_kwargs = litellm_kwargs
# Get model configuration
try:
self._model_config = self._config.get_llm_model(model)
except ValueError as e:
logger.error(f"Failed to get model configuration: {e}")
raise
# Get provider configuration
try:
self._provider_config = self._config.get_provider(self._model_config.provider)
except ValueError as e:
logger.error(f"Failed to get provider configuration: {e}")
raise
# Set up LiteLLM environment
self._setup_litellm()
def _setup_litellm(self) -> None:
"""Configure LiteLLM with provider settings."""
provider = self._model_config.provider
# Set API key
if self._provider_config.api_key:
env_var = f"{provider.upper()}_API_KEY"
litellm.api_key = self._provider_config.api_key
# Also set environment-specific keys
if provider == "openai":
litellm.openai_key = self._provider_config.api_key
elif provider == "anthropic":
litellm.anthropic_key = self._provider_config.api_key
# Set API base
if self._provider_config.api_base:
litellm.api_base = self._provider_config.api_base
def _format_model_name(self) -> str:
"""Format model name for LiteLLM.
Returns:
Formatted model name (e.g., "gpt-4", "claude-3-opus-20240229")
"""
# LiteLLM expects model names in format: "provider/model" or just "model"
# If provider is explicit, use provider/model format
provider = self._model_config.provider
model = self._model_config.model
# For some providers, LiteLLM expects explicit prefix
if provider in ["anthropic", "azure", "vertex_ai", "bedrock"]:
return f"{provider}/{model}"
return model
def chat(
self,
messages: Sequence[ChatMessage],
**kwargs: Any,
) -> LLMResponse:
"""Chat completion for a sequence of messages.
Args:
messages: Sequence of chat messages
**kwargs: Additional arguments for litellm.completion()
Returns:
LLM response with content and raw response
Raises:
Exception: If LiteLLM completion fails
"""
# Convert messages to LiteLLM format
litellm_messages = [
{"role": msg.role, "content": msg.content} for msg in messages
]
# Merge kwargs
completion_kwargs = {**self._litellm_kwargs, **kwargs}
try:
# Call LiteLLM
response = litellm.completion(
model=self._format_model_name(),
messages=litellm_messages,
**completion_kwargs,
)
# Extract content
content = response.choices[0].message.content or ""
return LLMResponse(content=content, raw=response)
except Exception as e:
logger.error(f"LiteLLM completion failed: {e}")
raise
def complete(self, prompt: str, **kwargs: Any) -> LLMResponse:
"""Text completion for a prompt.
Args:
prompt: Input prompt
**kwargs: Additional arguments for litellm.completion()
Returns:
LLM response with content and raw response
Raises:
Exception: If LiteLLM completion fails
"""
# Convert to chat format (most modern models use chat interface)
messages = [ChatMessage(role="user", content=prompt)]
return self.chat(messages, **kwargs)
@property
def model_name(self) -> str:
"""Get configured model name."""
return self._model_name
@property
def provider(self) -> str:
"""Get configured provider name."""
return self._model_config.provider

View File

@@ -0,0 +1,22 @@
"""Configuration management for LiteLLM integration."""
from __future__ import annotations
from .loader import get_config, load_config, reset_config
from .models import (
EmbeddingModelConfig,
LiteLLMConfig,
LLMModelConfig,
ProviderConfig,
)
__all__ = [
"LiteLLMConfig",
"ProviderConfig",
"LLMModelConfig",
"EmbeddingModelConfig",
"load_config",
"get_config",
"reset_config",
]

View File

@@ -0,0 +1,150 @@
"""Configuration loader with environment variable substitution."""
from __future__ import annotations
import os
import re
from pathlib import Path
from typing import Any
import yaml
from .models import LiteLLMConfig
# Default configuration path
DEFAULT_CONFIG_PATH = Path.home() / ".ccw" / "config" / "litellm-config.yaml"
# Global configuration singleton
_config_instance: LiteLLMConfig | None = None
def _substitute_env_vars(value: Any) -> Any:
"""Recursively substitute environment variables in configuration values.
Supports ${ENV_VAR} and ${ENV_VAR:-default} syntax.
Args:
value: Configuration value (str, dict, list, or primitive)
Returns:
Value with environment variables substituted
"""
if isinstance(value, str):
# Pattern: ${VAR} or ${VAR:-default}
pattern = r"\$\{([^:}]+)(?::-(.*?))?\}"
def replace_var(match: re.Match) -> str:
var_name = match.group(1)
default_value = match.group(2) if match.group(2) is not None else ""
return os.environ.get(var_name, default_value)
return re.sub(pattern, replace_var, value)
if isinstance(value, dict):
return {k: _substitute_env_vars(v) for k, v in value.items()}
if isinstance(value, list):
return [_substitute_env_vars(item) for item in value]
return value
def _get_default_config() -> dict[str, Any]:
"""Get default configuration when no config file exists.
Returns:
Default configuration dictionary
"""
return {
"version": 1,
"default_provider": "openai",
"providers": {
"openai": {
"api_key": "${OPENAI_API_KEY}",
"api_base": "https://api.openai.com/v1",
},
},
"llm_models": {
"default": {
"provider": "openai",
"model": "gpt-4",
},
"fast": {
"provider": "openai",
"model": "gpt-3.5-turbo",
},
},
"embedding_models": {
"default": {
"provider": "openai",
"model": "text-embedding-3-small",
"dimensions": 1536,
},
},
}
def load_config(config_path: Path | str | None = None) -> LiteLLMConfig:
"""Load LiteLLM configuration from YAML file.
Args:
config_path: Path to configuration file (default: ~/.ccw/config/litellm-config.yaml)
Returns:
Parsed and validated configuration
Raises:
FileNotFoundError: If config file not found and no default available
ValueError: If configuration is invalid
"""
if config_path is None:
config_path = DEFAULT_CONFIG_PATH
else:
config_path = Path(config_path)
# Load configuration
if config_path.exists():
try:
with open(config_path, "r", encoding="utf-8") as f:
raw_config = yaml.safe_load(f)
except Exception as e:
raise ValueError(f"Failed to load configuration from {config_path}: {e}") from e
else:
# Use default configuration
raw_config = _get_default_config()
# Substitute environment variables
config_data = _substitute_env_vars(raw_config)
# Validate and parse with Pydantic
try:
return LiteLLMConfig.model_validate(config_data)
except Exception as e:
raise ValueError(f"Invalid configuration: {e}") from e
def get_config(config_path: Path | str | None = None, reload: bool = False) -> LiteLLMConfig:
"""Get global configuration singleton.
Args:
config_path: Path to configuration file (default: ~/.ccw/config/litellm-config.yaml)
reload: Force reload configuration from disk
Returns:
Global configuration instance
"""
global _config_instance
if _config_instance is None or reload:
_config_instance = load_config(config_path)
return _config_instance
def reset_config() -> None:
"""Reset global configuration singleton.
Useful for testing.
"""
global _config_instance
_config_instance = None

View File

@@ -0,0 +1,130 @@
"""Pydantic configuration models for LiteLLM integration."""
from __future__ import annotations
from typing import Any
from pydantic import BaseModel, Field
class ProviderConfig(BaseModel):
"""Provider API configuration.
Supports environment variable substitution in the format ${ENV_VAR}.
"""
api_key: str | None = None
api_base: str | None = None
model_config = {"extra": "allow"}
class LLMModelConfig(BaseModel):
"""LLM model configuration."""
provider: str
model: str
model_config = {"extra": "allow"}
class EmbeddingModelConfig(BaseModel):
"""Embedding model configuration."""
provider: str # "openai", "fastembed", "ollama", etc.
model: str
dimensions: int
model_config = {"extra": "allow"}
class LiteLLMConfig(BaseModel):
"""Root configuration for LiteLLM integration.
Example YAML:
version: 1
default_provider: openai
providers:
openai:
api_key: ${OPENAI_API_KEY}
api_base: https://api.openai.com/v1
anthropic:
api_key: ${ANTHROPIC_API_KEY}
llm_models:
default:
provider: openai
model: gpt-4
fast:
provider: openai
model: gpt-3.5-turbo
embedding_models:
default:
provider: openai
model: text-embedding-3-small
dimensions: 1536
"""
version: int = 1
default_provider: str = "openai"
providers: dict[str, ProviderConfig] = Field(default_factory=dict)
llm_models: dict[str, LLMModelConfig] = Field(default_factory=dict)
embedding_models: dict[str, EmbeddingModelConfig] = Field(default_factory=dict)
model_config = {"extra": "allow"}
def get_llm_model(self, model: str = "default") -> LLMModelConfig:
"""Get LLM model configuration by name.
Args:
model: Model name or "default"
Returns:
LLM model configuration
Raises:
ValueError: If model not found
"""
if model not in self.llm_models:
raise ValueError(
f"LLM model '{model}' not found in configuration. "
f"Available models: {list(self.llm_models.keys())}"
)
return self.llm_models[model]
def get_embedding_model(self, model: str = "default") -> EmbeddingModelConfig:
"""Get embedding model configuration by name.
Args:
model: Model name or "default"
Returns:
Embedding model configuration
Raises:
ValueError: If model not found
"""
if model not in self.embedding_models:
raise ValueError(
f"Embedding model '{model}' not found in configuration. "
f"Available models: {list(self.embedding_models.keys())}"
)
return self.embedding_models[model]
def get_provider(self, provider: str) -> ProviderConfig:
"""Get provider configuration by name.
Args:
provider: Provider name
Returns:
Provider configuration
Raises:
ValueError: If provider not found
"""
if provider not in self.providers:
raise ValueError(
f"Provider '{provider}' not found in configuration. "
f"Available providers: {list(self.providers.keys())}"
)
return self.providers[provider]

View File

@@ -0,0 +1,14 @@
"""Abstract interfaces for ccw-litellm."""
from __future__ import annotations
from .embedder import AbstractEmbedder
from .llm import AbstractLLMClient, ChatMessage, LLMResponse
__all__ = [
"AbstractEmbedder",
"AbstractLLMClient",
"ChatMessage",
"LLMResponse",
]

View File

@@ -0,0 +1,52 @@
from __future__ import annotations
import asyncio
from abc import ABC, abstractmethod
from typing import Any, Sequence
import numpy as np
from numpy.typing import NDArray
class AbstractEmbedder(ABC):
"""Embedding interface compatible with fastembed-style embedders.
Implementers only need to provide the synchronous `embed` method; an
asynchronous `aembed` wrapper is provided for convenience.
"""
@property
@abstractmethod
def dimensions(self) -> int:
"""Embedding vector size."""
@abstractmethod
def embed(
self,
texts: str | Sequence[str],
*,
batch_size: int | None = None,
**kwargs: Any,
) -> NDArray[np.floating]:
"""Embed one or more texts.
Returns:
A numpy array of shape (n_texts, dimensions).
"""
async def aembed(
self,
texts: str | Sequence[str],
*,
batch_size: int | None = None,
**kwargs: Any,
) -> NDArray[np.floating]:
"""Async wrapper around `embed` using a worker thread by default."""
return await asyncio.to_thread(
self.embed,
texts,
batch_size=batch_size,
**kwargs,
)

View File

@@ -0,0 +1,45 @@
from __future__ import annotations
import asyncio
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Literal, Sequence
@dataclass(frozen=True, slots=True)
class ChatMessage:
role: Literal["system", "user", "assistant", "tool"]
content: str
@dataclass(frozen=True, slots=True)
class LLMResponse:
content: str
raw: Any | None = None
class AbstractLLMClient(ABC):
"""LiteLLM-like client interface.
Implementers only need to provide synchronous methods; async wrappers are
provided via `asyncio.to_thread`.
"""
@abstractmethod
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> LLMResponse:
"""Chat completion for a sequence of messages."""
@abstractmethod
def complete(self, prompt: str, **kwargs: Any) -> LLMResponse:
"""Text completion for a prompt."""
async def achat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> LLMResponse:
"""Async wrapper around `chat` using a worker thread by default."""
return await asyncio.to_thread(self.chat, messages, **kwargs)
async def acomplete(self, prompt: str, **kwargs: Any) -> LLMResponse:
"""Async wrapper around `complete` using a worker thread by default."""
return await asyncio.to_thread(self.complete, prompt, **kwargs)

View File

@@ -0,0 +1,11 @@
from __future__ import annotations
import sys
from pathlib import Path
def pytest_configure() -> None:
project_root = Path(__file__).resolve().parents[1]
src_dir = project_root / "src"
sys.path.insert(0, str(src_dir))

View File

@@ -0,0 +1,64 @@
from __future__ import annotations
import asyncio
from typing import Any, Sequence
import numpy as np
from ccw_litellm.interfaces import AbstractEmbedder, AbstractLLMClient, ChatMessage, LLMResponse
class _DummyEmbedder(AbstractEmbedder):
@property
def dimensions(self) -> int:
return 3
def embed(
self,
texts: str | Sequence[str],
*,
batch_size: int | None = None,
**kwargs: Any,
) -> np.ndarray:
if isinstance(texts, str):
texts = [texts]
_ = batch_size
_ = kwargs
return np.zeros((len(texts), self.dimensions), dtype=np.float32)
class _DummyLLM(AbstractLLMClient):
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> LLMResponse:
_ = kwargs
return LLMResponse(content="".join(m.content for m in messages))
def complete(self, prompt: str, **kwargs: Any) -> LLMResponse:
_ = kwargs
return LLMResponse(content=prompt)
def test_embed_sync_shape_and_dtype() -> None:
emb = _DummyEmbedder()
out = emb.embed(["a", "b"])
assert out.shape == (2, 3)
assert out.dtype == np.float32
def test_embed_async_wrapper() -> None:
emb = _DummyEmbedder()
out = asyncio.run(emb.aembed("x"))
assert out.shape == (1, 3)
def test_llm_sync() -> None:
llm = _DummyLLM()
out = llm.chat([ChatMessage(role="user", content="hi")])
assert out == LLMResponse(content="hi")
def test_llm_async_wrappers() -> None:
llm = _DummyLLM()
out1 = asyncio.run(llm.achat([ChatMessage(role="user", content="a")]))
out2 = asyncio.run(llm.acomplete("b"))
assert out1.content == "a"
assert out2.content == "b"

View File

@@ -0,0 +1,360 @@
/**
* LiteLLM API Configuration Manager
* Manages provider credentials, custom endpoints, and cache settings
*/
import { existsSync, readFileSync, writeFileSync } from 'fs';
import { join } from 'path';
import { StoragePaths, ensureStorageDir } from './storage-paths.js';
import type {
LiteLLMApiConfig,
ProviderCredential,
CustomEndpoint,
GlobalCacheSettings,
ProviderType,
CacheStrategy,
} from '../types/litellm-api-config.js';
/**
* Default configuration
*/
function getDefaultConfig(): LiteLLMApiConfig {
return {
version: 1,
providers: [],
endpoints: [],
globalCacheSettings: {
enabled: true,
cacheDir: '~/.ccw/cache/context',
maxTotalSizeMB: 100,
},
};
}
/**
* Get config file path for a project
*/
function getConfigPath(baseDir: string): string {
const paths = StoragePaths.project(baseDir);
ensureStorageDir(paths.config);
return join(paths.config, 'litellm-api-config.json');
}
/**
* Load configuration from file
*/
export function loadLiteLLMApiConfig(baseDir: string): LiteLLMApiConfig {
const configPath = getConfigPath(baseDir);
if (!existsSync(configPath)) {
return getDefaultConfig();
}
try {
const content = readFileSync(configPath, 'utf-8');
return JSON.parse(content) as LiteLLMApiConfig;
} catch (error) {
console.error('[LiteLLM Config] Failed to load config:', error);
return getDefaultConfig();
}
}
/**
* Save configuration to file
*/
function saveConfig(baseDir: string, config: LiteLLMApiConfig): void {
const configPath = getConfigPath(baseDir);
writeFileSync(configPath, JSON.stringify(config, null, 2), 'utf-8');
}
/**
* Resolve environment variables in API key
* Supports ${ENV_VAR} syntax
*/
export function resolveEnvVar(value: string): string {
if (!value) return value;
const envVarMatch = value.match(/^\$\{(.+)\}$/);
if (envVarMatch) {
const envVarName = envVarMatch[1];
return process.env[envVarName] || '';
}
return value;
}
// ===========================
// Provider Management
// ===========================
/**
* Get all providers
*/
export function getAllProviders(baseDir: string): ProviderCredential[] {
const config = loadLiteLLMApiConfig(baseDir);
return config.providers;
}
/**
* Get provider by ID
*/
export function getProvider(baseDir: string, providerId: string): ProviderCredential | null {
const config = loadLiteLLMApiConfig(baseDir);
return config.providers.find((p) => p.id === providerId) || null;
}
/**
* Get provider with resolved environment variables
*/
export function getProviderWithResolvedEnvVars(
baseDir: string,
providerId: string
): (ProviderCredential & { resolvedApiKey: string }) | null {
const provider = getProvider(baseDir, providerId);
if (!provider) return null;
return {
...provider,
resolvedApiKey: resolveEnvVar(provider.apiKey),
};
}
/**
* Add new provider
*/
export function addProvider(
baseDir: string,
providerData: Omit<ProviderCredential, 'id' | 'createdAt' | 'updatedAt'>
): ProviderCredential {
const config = loadLiteLLMApiConfig(baseDir);
const provider: ProviderCredential = {
...providerData,
id: `${providerData.type}-${Date.now()}`,
createdAt: new Date().toISOString(),
updatedAt: new Date().toISOString(),
};
config.providers.push(provider);
saveConfig(baseDir, config);
return provider;
}
/**
* Update provider
*/
export function updateProvider(
baseDir: string,
providerId: string,
updates: Partial<Omit<ProviderCredential, 'id' | 'createdAt' | 'updatedAt'>>
): ProviderCredential {
const config = loadLiteLLMApiConfig(baseDir);
const providerIndex = config.providers.findIndex((p) => p.id === providerId);
if (providerIndex === -1) {
throw new Error(`Provider not found: ${providerId}`);
}
config.providers[providerIndex] = {
...config.providers[providerIndex],
...updates,
updatedAt: new Date().toISOString(),
};
saveConfig(baseDir, config);
return config.providers[providerIndex];
}
/**
* Delete provider
*/
export function deleteProvider(baseDir: string, providerId: string): boolean {
const config = loadLiteLLMApiConfig(baseDir);
const initialLength = config.providers.length;
config.providers = config.providers.filter((p) => p.id !== providerId);
if (config.providers.length === initialLength) {
return false;
}
// Also remove endpoints using this provider
config.endpoints = config.endpoints.filter((e) => e.providerId !== providerId);
saveConfig(baseDir, config);
return true;
}
// ===========================
// Endpoint Management
// ===========================
/**
* Get all endpoints
*/
export function getAllEndpoints(baseDir: string): CustomEndpoint[] {
const config = loadLiteLLMApiConfig(baseDir);
return config.endpoints;
}
/**
* Get endpoint by ID
*/
export function getEndpoint(baseDir: string, endpointId: string): CustomEndpoint | null {
const config = loadLiteLLMApiConfig(baseDir);
return config.endpoints.find((e) => e.id === endpointId) || null;
}
/**
* Find endpoint by ID (alias for getEndpoint)
*/
export function findEndpointById(baseDir: string, endpointId: string): CustomEndpoint | null {
return getEndpoint(baseDir, endpointId);
}
/**
* Add new endpoint
*/
export function addEndpoint(
baseDir: string,
endpointData: Omit<CustomEndpoint, 'createdAt' | 'updatedAt'>
): CustomEndpoint {
const config = loadLiteLLMApiConfig(baseDir);
// Check if ID already exists
if (config.endpoints.some((e) => e.id === endpointData.id)) {
throw new Error(`Endpoint ID already exists: ${endpointData.id}`);
}
// Verify provider exists
if (!config.providers.find((p) => p.id === endpointData.providerId)) {
throw new Error(`Provider not found: ${endpointData.providerId}`);
}
const endpoint: CustomEndpoint = {
...endpointData,
createdAt: new Date().toISOString(),
updatedAt: new Date().toISOString(),
};
config.endpoints.push(endpoint);
saveConfig(baseDir, config);
return endpoint;
}
/**
* Update endpoint
*/
export function updateEndpoint(
baseDir: string,
endpointId: string,
updates: Partial<Omit<CustomEndpoint, 'id' | 'createdAt' | 'updatedAt'>>
): CustomEndpoint {
const config = loadLiteLLMApiConfig(baseDir);
const endpointIndex = config.endpoints.findIndex((e) => e.id === endpointId);
if (endpointIndex === -1) {
throw new Error(`Endpoint not found: ${endpointId}`);
}
// Verify provider exists if updating providerId
if (updates.providerId && !config.providers.find((p) => p.id === updates.providerId)) {
throw new Error(`Provider not found: ${updates.providerId}`);
}
config.endpoints[endpointIndex] = {
...config.endpoints[endpointIndex],
...updates,
updatedAt: new Date().toISOString(),
};
saveConfig(baseDir, config);
return config.endpoints[endpointIndex];
}
/**
* Delete endpoint
*/
export function deleteEndpoint(baseDir: string, endpointId: string): boolean {
const config = loadLiteLLMApiConfig(baseDir);
const initialLength = config.endpoints.length;
config.endpoints = config.endpoints.filter((e) => e.id !== endpointId);
if (config.endpoints.length === initialLength) {
return false;
}
// Clear default endpoint if deleted
if (config.defaultEndpoint === endpointId) {
delete config.defaultEndpoint;
}
saveConfig(baseDir, config);
return true;
}
// ===========================
// Default Endpoint Management
// ===========================
/**
* Get default endpoint
*/
export function getDefaultEndpoint(baseDir: string): string | undefined {
const config = loadLiteLLMApiConfig(baseDir);
return config.defaultEndpoint;
}
/**
* Set default endpoint
*/
export function setDefaultEndpoint(baseDir: string, endpointId?: string): void {
const config = loadLiteLLMApiConfig(baseDir);
if (endpointId) {
// Verify endpoint exists
if (!config.endpoints.find((e) => e.id === endpointId)) {
throw new Error(`Endpoint not found: ${endpointId}`);
}
config.defaultEndpoint = endpointId;
} else {
delete config.defaultEndpoint;
}
saveConfig(baseDir, config);
}
// ===========================
// Cache Settings Management
// ===========================
/**
* Get global cache settings
*/
export function getGlobalCacheSettings(baseDir: string): GlobalCacheSettings {
const config = loadLiteLLMApiConfig(baseDir);
return config.globalCacheSettings;
}
/**
* Update global cache settings
*/
export function updateGlobalCacheSettings(
baseDir: string,
settings: Partial<GlobalCacheSettings>
): void {
const config = loadLiteLLMApiConfig(baseDir);
config.globalCacheSettings = {
...config.globalCacheSettings,
...settings,
};
saveConfig(baseDir, config);
}
// Re-export types
export type { ProviderCredential, CustomEndpoint, ProviderType, CacheStrategy };

View File

@@ -0,0 +1,259 @@
/**
* Provider Model Presets
*
* Predefined model information for each supported LLM provider.
* Used for UI dropdowns and validation.
*/
import type { ProviderType } from '../types/litellm-api-config.js';
/**
* Model information metadata
*/
export interface ModelInfo {
/** Model identifier (used in API calls) */
id: string;
/** Human-readable display name */
name: string;
/** Context window size in tokens */
contextWindow: number;
/** Whether this model supports prompt caching */
supportsCaching: boolean;
}
/**
* Predefined models for each provider
* Used for UI selection and validation
*/
export const PROVIDER_MODELS: Record<ProviderType, ModelInfo[]> = {
openai: [
{
id: 'gpt-4o',
name: 'GPT-4o',
contextWindow: 128000,
supportsCaching: true
},
{
id: 'gpt-4o-mini',
name: 'GPT-4o Mini',
contextWindow: 128000,
supportsCaching: true
},
{
id: 'o1',
name: 'O1',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'o1-mini',
name: 'O1 Mini',
contextWindow: 128000,
supportsCaching: true
},
{
id: 'gpt-4-turbo',
name: 'GPT-4 Turbo',
contextWindow: 128000,
supportsCaching: false
}
],
anthropic: [
{
id: 'claude-sonnet-4-20250514',
name: 'Claude Sonnet 4',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'claude-3-5-sonnet-20241022',
name: 'Claude 3.5 Sonnet',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'claude-3-5-haiku-20241022',
name: 'Claude 3.5 Haiku',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'claude-3-opus-20240229',
name: 'Claude 3 Opus',
contextWindow: 200000,
supportsCaching: false
}
],
ollama: [
{
id: 'llama3.2',
name: 'Llama 3.2',
contextWindow: 128000,
supportsCaching: false
},
{
id: 'llama3.1',
name: 'Llama 3.1',
contextWindow: 128000,
supportsCaching: false
},
{
id: 'qwen2.5-coder',
name: 'Qwen 2.5 Coder',
contextWindow: 32000,
supportsCaching: false
},
{
id: 'codellama',
name: 'Code Llama',
contextWindow: 16000,
supportsCaching: false
},
{
id: 'mistral',
name: 'Mistral',
contextWindow: 32000,
supportsCaching: false
}
],
azure: [
{
id: 'gpt-4o',
name: 'GPT-4o (Azure)',
contextWindow: 128000,
supportsCaching: true
},
{
id: 'gpt-4o-mini',
name: 'GPT-4o Mini (Azure)',
contextWindow: 128000,
supportsCaching: true
},
{
id: 'gpt-4-turbo',
name: 'GPT-4 Turbo (Azure)',
contextWindow: 128000,
supportsCaching: false
},
{
id: 'gpt-35-turbo',
name: 'GPT-3.5 Turbo (Azure)',
contextWindow: 16000,
supportsCaching: false
}
],
google: [
{
id: 'gemini-2.0-flash-exp',
name: 'Gemini 2.0 Flash Experimental',
contextWindow: 1048576,
supportsCaching: true
},
{
id: 'gemini-1.5-pro',
name: 'Gemini 1.5 Pro',
contextWindow: 2097152,
supportsCaching: true
},
{
id: 'gemini-1.5-flash',
name: 'Gemini 1.5 Flash',
contextWindow: 1048576,
supportsCaching: true
},
{
id: 'gemini-1.0-pro',
name: 'Gemini 1.0 Pro',
contextWindow: 32000,
supportsCaching: false
}
],
mistral: [
{
id: 'mistral-large-latest',
name: 'Mistral Large',
contextWindow: 128000,
supportsCaching: false
},
{
id: 'mistral-medium-latest',
name: 'Mistral Medium',
contextWindow: 32000,
supportsCaching: false
},
{
id: 'mistral-small-latest',
name: 'Mistral Small',
contextWindow: 32000,
supportsCaching: false
},
{
id: 'codestral-latest',
name: 'Codestral',
contextWindow: 32000,
supportsCaching: false
}
],
deepseek: [
{
id: 'deepseek-chat',
name: 'DeepSeek Chat',
contextWindow: 64000,
supportsCaching: false
},
{
id: 'deepseek-coder',
name: 'DeepSeek Coder',
contextWindow: 64000,
supportsCaching: false
}
],
custom: [
{
id: 'custom-model',
name: 'Custom Model',
contextWindow: 128000,
supportsCaching: false
}
]
};
/**
* Get models for a specific provider
* @param providerType - Provider type to get models for
* @returns Array of model information
*/
export function getModelsForProvider(providerType: ProviderType): ModelInfo[] {
return PROVIDER_MODELS[providerType] || [];
}
/**
* Get model information by ID within a provider
* @param providerType - Provider type
* @param modelId - Model identifier
* @returns Model information or undefined if not found
*/
export function getModelInfo(providerType: ProviderType, modelId: string): ModelInfo | undefined {
const models = PROVIDER_MODELS[providerType] || [];
return models.find(m => m.id === modelId);
}
/**
* Validate if a model ID is supported by a provider
* @param providerType - Provider type
* @param modelId - Model identifier to validate
* @returns true if model is valid for provider
*/
export function isValidModel(providerType: ProviderType, modelId: string): boolean {
return getModelInfo(providerType, modelId) !== undefined;
}

View File

@@ -46,7 +46,8 @@ const MODULE_CSS_FILES = [
'27-graph-explorer.css',
'28-mcp-manager.css',
'29-help.css',
'30-core-memory.css'
'30-core-memory.css',
'31-api-settings.css'
];
const MODULE_FILES = [
@@ -95,6 +96,7 @@ const MODULE_FILES = [
'views/skills-manager.js',
'views/rules-manager.js',
'views/claude-manager.js',
'views/api-settings.js',
'views/help.js',
'main.js'
];

View File

@@ -0,0 +1,485 @@
// @ts-nocheck
/**
* LiteLLM API Routes Module
* Handles LiteLLM provider management, endpoint configuration, and cache management
*/
import type { IncomingMessage, ServerResponse } from 'http';
import {
getAllProviders,
getProvider,
addProvider,
updateProvider,
deleteProvider,
getAllEndpoints,
getEndpoint,
addEndpoint,
updateEndpoint,
deleteEndpoint,
getDefaultEndpoint,
setDefaultEndpoint,
getGlobalCacheSettings,
updateGlobalCacheSettings,
loadLiteLLMApiConfig,
type ProviderCredential,
type CustomEndpoint,
type ProviderType,
} from '../../config/litellm-api-config-manager.js';
import { getContextCacheStore } from '../../tools/context-cache-store.js';
import { getLiteLLMClient } from '../../tools/litellm-client.js';
export interface RouteContext {
pathname: string;
url: URL;
req: IncomingMessage;
res: ServerResponse;
initialPath: string;
handlePostRequest: (req: IncomingMessage, res: ServerResponse, handler: (body: unknown) => Promise<any>) => void;
broadcastToClients: (data: unknown) => void;
}
// ===========================
// Model Information
// ===========================
interface ModelInfo {
id: string;
name: string;
provider: ProviderType;
description?: string;
}
const PROVIDER_MODELS: Record<ProviderType, ModelInfo[]> = {
openai: [
{ id: 'gpt-4-turbo', name: 'GPT-4 Turbo', provider: 'openai', description: '128K context' },
{ id: 'gpt-4', name: 'GPT-4', provider: 'openai', description: '8K context' },
{ id: 'gpt-3.5-turbo', name: 'GPT-3.5 Turbo', provider: 'openai', description: '16K context' },
],
anthropic: [
{ id: 'claude-3-opus-20240229', name: 'Claude 3 Opus', provider: 'anthropic', description: '200K context' },
{ id: 'claude-3-sonnet-20240229', name: 'Claude 3 Sonnet', provider: 'anthropic', description: '200K context' },
{ id: 'claude-3-haiku-20240307', name: 'Claude 3 Haiku', provider: 'anthropic', description: '200K context' },
],
google: [
{ id: 'gemini-pro', name: 'Gemini Pro', provider: 'google', description: '32K context' },
{ id: 'gemini-pro-vision', name: 'Gemini Pro Vision', provider: 'google', description: '16K context' },
],
ollama: [
{ id: 'llama2', name: 'Llama 2', provider: 'ollama', description: 'Local model' },
{ id: 'mistral', name: 'Mistral', provider: 'ollama', description: 'Local model' },
],
azure: [],
mistral: [
{ id: 'mistral-large-latest', name: 'Mistral Large', provider: 'mistral', description: '32K context' },
{ id: 'mistral-medium-latest', name: 'Mistral Medium', provider: 'mistral', description: '32K context' },
],
deepseek: [
{ id: 'deepseek-chat', name: 'DeepSeek Chat', provider: 'deepseek', description: '64K context' },
{ id: 'deepseek-coder', name: 'DeepSeek Coder', provider: 'deepseek', description: '64K context' },
],
custom: [],
};
/**
* Handle LiteLLM API routes
* @returns true if route was handled, false otherwise
*/
export async function handleLiteLLMApiRoutes(ctx: RouteContext): Promise<boolean> {
const { pathname, url, req, res, initialPath, handlePostRequest, broadcastToClients } = ctx;
// ===========================
// Provider Management Routes
// ===========================
// GET /api/litellm-api/providers - List all providers
if (pathname === '/api/litellm-api/providers' && req.method === 'GET') {
try {
const providers = getAllProviders(initialPath);
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ providers, count: providers.length }));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: (err as Error).message }));
}
return true;
}
// POST /api/litellm-api/providers - Create provider
if (pathname === '/api/litellm-api/providers' && req.method === 'POST') {
handlePostRequest(req, res, async (body: unknown) => {
const providerData = body as Omit<ProviderCredential, 'id' | 'createdAt' | 'updatedAt'>;
if (!providerData.name || !providerData.type || !providerData.apiKey) {
return { error: 'Provider name, type, and apiKey are required', status: 400 };
}
try {
const provider = addProvider(initialPath, providerData);
broadcastToClients({
type: 'LITELLM_PROVIDER_CREATED',
payload: { provider, timestamp: new Date().toISOString() }
});
return { success: true, provider };
} catch (err) {
return { error: (err as Error).message, status: 500 };
}
});
return true;
}
// GET /api/litellm-api/providers/:id - Get provider by ID
const providerGetMatch = pathname.match(/^\/api\/litellm-api\/providers\/([^/]+)$/);
if (providerGetMatch && req.method === 'GET') {
const providerId = providerGetMatch[1];
try {
const provider = getProvider(initialPath, providerId);
if (!provider) {
res.writeHead(404, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: 'Provider not found' }));
return true;
}
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify(provider));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: (err as Error).message }));
}
return true;
}
// PUT /api/litellm-api/providers/:id - Update provider
const providerUpdateMatch = pathname.match(/^\/api\/litellm-api\/providers\/([^/]+)$/);
if (providerUpdateMatch && req.method === 'PUT') {
const providerId = providerUpdateMatch[1];
handlePostRequest(req, res, async (body: unknown) => {
const updates = body as Partial<Omit<ProviderCredential, 'id' | 'createdAt' | 'updatedAt'>>;
try {
const provider = updateProvider(initialPath, providerId, updates);
broadcastToClients({
type: 'LITELLM_PROVIDER_UPDATED',
payload: { provider, timestamp: new Date().toISOString() }
});
return { success: true, provider };
} catch (err) {
return { error: (err as Error).message, status: 404 };
}
});
return true;
}
// DELETE /api/litellm-api/providers/:id - Delete provider
const providerDeleteMatch = pathname.match(/^\/api\/litellm-api\/providers\/([^/]+)$/);
if (providerDeleteMatch && req.method === 'DELETE') {
const providerId = providerDeleteMatch[1];
try {
const success = deleteProvider(initialPath, providerId);
if (!success) {
res.writeHead(404, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: 'Provider not found' }));
return true;
}
broadcastToClients({
type: 'LITELLM_PROVIDER_DELETED',
payload: { providerId, timestamp: new Date().toISOString() }
});
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ success: true, message: 'Provider deleted' }));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: (err as Error).message }));
}
return true;
}
// POST /api/litellm-api/providers/:id/test - Test provider connection
const providerTestMatch = pathname.match(/^\/api\/litellm-api\/providers\/([^/]+)\/test$/);
if (providerTestMatch && req.method === 'POST') {
const providerId = providerTestMatch[1];
try {
const provider = getProvider(initialPath, providerId);
if (!provider) {
res.writeHead(404, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ success: false, error: 'Provider not found' }));
return true;
}
if (!provider.enabled) {
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ success: false, error: 'Provider is disabled' }));
return true;
}
// Test connection using litellm client
const client = getLiteLLMClient();
const available = await client.isAvailable();
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ success: available, provider: provider.type }));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ success: false, error: (err as Error).message }));
}
return true;
}
// ===========================
// Endpoint Management Routes
// ===========================
// GET /api/litellm-api/endpoints - List all endpoints
if (pathname === '/api/litellm-api/endpoints' && req.method === 'GET') {
try {
const endpoints = getAllEndpoints(initialPath);
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ endpoints, count: endpoints.length }));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: (err as Error).message }));
}
return true;
}
// POST /api/litellm-api/endpoints - Create endpoint
if (pathname === '/api/litellm-api/endpoints' && req.method === 'POST') {
handlePostRequest(req, res, async (body: unknown) => {
const endpointData = body as Omit<CustomEndpoint, 'createdAt' | 'updatedAt'>;
if (!endpointData.id || !endpointData.name || !endpointData.providerId || !endpointData.model) {
return { error: 'Endpoint id, name, providerId, and model are required', status: 400 };
}
try {
const endpoint = addEndpoint(initialPath, endpointData);
broadcastToClients({
type: 'LITELLM_ENDPOINT_CREATED',
payload: { endpoint, timestamp: new Date().toISOString() }
});
return { success: true, endpoint };
} catch (err) {
return { error: (err as Error).message, status: 500 };
}
});
return true;
}
// GET /api/litellm-api/endpoints/:id - Get endpoint by ID
const endpointGetMatch = pathname.match(/^\/api\/litellm-api\/endpoints\/([^/]+)$/);
if (endpointGetMatch && req.method === 'GET') {
const endpointId = endpointGetMatch[1];
try {
const endpoint = getEndpoint(initialPath, endpointId);
if (!endpoint) {
res.writeHead(404, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: 'Endpoint not found' }));
return true;
}
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify(endpoint));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: (err as Error).message }));
}
return true;
}
// PUT /api/litellm-api/endpoints/:id - Update endpoint
const endpointUpdateMatch = pathname.match(/^\/api\/litellm-api\/endpoints\/([^/]+)$/);
if (endpointUpdateMatch && req.method === 'PUT') {
const endpointId = endpointUpdateMatch[1];
handlePostRequest(req, res, async (body: unknown) => {
const updates = body as Partial<Omit<CustomEndpoint, 'id' | 'createdAt' | 'updatedAt'>>;
try {
const endpoint = updateEndpoint(initialPath, endpointId, updates);
broadcastToClients({
type: 'LITELLM_ENDPOINT_UPDATED',
payload: { endpoint, timestamp: new Date().toISOString() }
});
return { success: true, endpoint };
} catch (err) {
return { error: (err as Error).message, status: 404 };
}
});
return true;
}
// DELETE /api/litellm-api/endpoints/:id - Delete endpoint
const endpointDeleteMatch = pathname.match(/^\/api\/litellm-api\/endpoints\/([^/]+)$/);
if (endpointDeleteMatch && req.method === 'DELETE') {
const endpointId = endpointDeleteMatch[1];
try {
const success = deleteEndpoint(initialPath, endpointId);
if (!success) {
res.writeHead(404, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: 'Endpoint not found' }));
return true;
}
broadcastToClients({
type: 'LITELLM_ENDPOINT_DELETED',
payload: { endpointId, timestamp: new Date().toISOString() }
});
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ success: true, message: 'Endpoint deleted' }));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: (err as Error).message }));
}
return true;
}
// ===========================
// Model Discovery Routes
// ===========================
// GET /api/litellm-api/models/:providerType - Get available models for provider type
const modelsMatch = pathname.match(/^\/api\/litellm-api\/models\/([^/]+)$/);
if (modelsMatch && req.method === 'GET') {
const providerType = modelsMatch[1] as ProviderType;
try {
const models = PROVIDER_MODELS[providerType];
if (!models) {
res.writeHead(404, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: 'Provider type not found' }));
return true;
}
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ providerType, models, count: models.length }));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: (err as Error).message }));
}
return true;
}
// ===========================
// Cache Management Routes
// ===========================
// GET /api/litellm-api/cache/stats - Get cache statistics
if (pathname === '/api/litellm-api/cache/stats' && req.method === 'GET') {
try {
const cacheStore = getContextCacheStore();
const stats = cacheStore.getStatus();
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify(stats));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: (err as Error).message }));
}
return true;
}
// POST /api/litellm-api/cache/clear - Clear cache
if (pathname === '/api/litellm-api/cache/clear' && req.method === 'POST') {
try {
const cacheStore = getContextCacheStore();
const result = cacheStore.clear();
broadcastToClients({
type: 'LITELLM_CACHE_CLEARED',
payload: { removed: result.removed, timestamp: new Date().toISOString() }
});
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ success: true, removed: result.removed }));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: (err as Error).message }));
}
return true;
}
// ===========================
// Config Management Routes
// ===========================
// GET /api/litellm-api/config - Get full config
if (pathname === '/api/litellm-api/config' && req.method === 'GET') {
try {
const config = loadLiteLLMApiConfig(initialPath);
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify(config));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: (err as Error).message }));
}
return true;
}
// PUT /api/litellm-api/config/cache - Update global cache settings
if (pathname === '/api/litellm-api/config/cache' && req.method === 'PUT') {
handlePostRequest(req, res, async (body: unknown) => {
const settings = body as Partial<{ enabled: boolean; cacheDir: string; maxTotalSizeMB: number }>;
try {
updateGlobalCacheSettings(initialPath, settings);
const updatedSettings = getGlobalCacheSettings(initialPath);
broadcastToClients({
type: 'LITELLM_CACHE_SETTINGS_UPDATED',
payload: { settings: updatedSettings, timestamp: new Date().toISOString() }
});
return { success: true, settings: updatedSettings };
} catch (err) {
return { error: (err as Error).message, status: 500 };
}
});
return true;
}
// PUT /api/litellm-api/config/default-endpoint - Set default endpoint
if (pathname === '/api/litellm-api/config/default-endpoint' && req.method === 'PUT') {
handlePostRequest(req, res, async (body: unknown) => {
const { endpointId } = body as { endpointId?: string };
try {
setDefaultEndpoint(initialPath, endpointId);
const defaultEndpoint = getDefaultEndpoint(initialPath);
broadcastToClients({
type: 'LITELLM_DEFAULT_ENDPOINT_UPDATED',
payload: { endpointId, defaultEndpoint, timestamp: new Date().toISOString() }
});
return { success: true, defaultEndpoint };
} catch (err) {
return { error: (err as Error).message, status: 500 };
}
});
return true;
}
return false;
}

View File

@@ -0,0 +1,107 @@
// @ts-nocheck
/**
* LiteLLM Routes Module
* Handles all LiteLLM-related API endpoints
*/
import type { IncomingMessage, ServerResponse } from 'http';
import { getLiteLLMClient, getLiteLLMStatus, checkLiteLLMAvailable } from '../../tools/litellm-client.js';
export interface RouteContext {
pathname: string;
url: URL;
req: IncomingMessage;
res: ServerResponse;
initialPath: string;
handlePostRequest: (req: IncomingMessage, res: ServerResponse, handler: (body: unknown) => Promise<any>) => void;
broadcastToClients: (data: unknown) => void;
}
/**
* Handle LiteLLM routes
* @returns true if route was handled, false otherwise
*/
export async function handleLiteLLMRoutes(ctx: RouteContext): Promise<boolean> {
const { pathname, url, req, res, initialPath, handlePostRequest } = ctx;
// API: LiteLLM Status - Check availability and version
if (pathname === '/api/litellm/status') {
try {
const status = await getLiteLLMStatus();
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify(status));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ available: false, error: err.message }));
}
return true;
}
// API: LiteLLM Config - Get configuration
if (pathname === '/api/litellm/config' && req.method === 'GET') {
try {
const client = getLiteLLMClient();
const config = await client.getConfig();
res.writeHead(200, { 'Content-Type': 'application/json' });
res.end(JSON.stringify(config));
} catch (err) {
res.writeHead(500, { 'Content-Type': 'application/json' });
res.end(JSON.stringify({ error: err.message }));
}
return true;
}
// API: LiteLLM Embed - Generate embeddings
if (pathname === '/api/litellm/embed' && req.method === 'POST') {
handlePostRequest(req, res, async (body) => {
const { texts, model = 'default' } = body;
if (!texts || !Array.isArray(texts)) {
return { error: 'texts array is required', status: 400 };
}
if (texts.length === 0) {
return { error: 'texts array cannot be empty', status: 400 };
}
try {
const client = getLiteLLMClient();
const result = await client.embed(texts, model);
return { success: true, ...result };
} catch (err) {
return { error: err.message, status: 500 };
}
});
return true;
}
// API: LiteLLM Chat - Chat with LLM
if (pathname === '/api/litellm/chat' && req.method === 'POST') {
handlePostRequest(req, res, async (body) => {
const { message, messages, model = 'default' } = body;
// Support both single message and messages array
if (!message && (!messages || !Array.isArray(messages))) {
return { error: 'message or messages array is required', status: 400 };
}
try {
const client = getLiteLLMClient();
if (messages && Array.isArray(messages)) {
// Multi-turn chat
const result = await client.chatMessages(messages, model);
return { success: true, ...result };
} else {
// Single message chat
const content = await client.chat(message, model);
return { success: true, content, model };
}
} catch (err) {
return { error: err.message, status: 500 };
}
});
return true;
}
return false;
}

View File

@@ -22,6 +22,8 @@ import { handleSessionRoutes } from './routes/session-routes.js';
import { handleCcwRoutes } from './routes/ccw-routes.js';
import { handleClaudeRoutes } from './routes/claude-routes.js';
import { handleHelpRoutes } from './routes/help-routes.js';
import { handleLiteLLMRoutes } from './routes/litellm-routes.js';
import { handleLiteLLMApiRoutes } from './routes/litellm-api-routes.js';
// Import WebSocket handling
import { handleWebSocketUpgrade, broadcastToClients } from './websocket.js';
@@ -311,6 +313,16 @@ export async function startServer(options: ServerOptions = {}): Promise<http.Ser
if (await handleCodexLensRoutes(routeContext)) return;
}
// LiteLLM routes (/api/litellm/*)
if (pathname.startsWith('/api/litellm/')) {
if (await handleLiteLLMRoutes(routeContext)) return;
}
// LiteLLM API routes (/api/litellm-api/*)
if (pathname.startsWith('/api/litellm-api/')) {
if (await handleLiteLLMApiRoutes(routeContext)) return;
}
// Graph routes (/api/graph/*)
if (pathname.startsWith('/api/graph/')) {
if (await handleGraphRoutes(routeContext)) return;

View File

@@ -0,0 +1,397 @@
/* ========================================
* API Settings Styles
* ======================================== */
/* Main Container */
.api-settings-container {
display: flex;
flex-direction: column;
gap: 1.5rem;
padding: 1rem;
}
/* Section Styles */
.api-settings-section {
background: hsl(var(--card));
border: 1px solid hsl(var(--border));
border-radius: 0.75rem;
padding: 1.25rem;
}
.section-header {
display: flex;
align-items: center;
justify-content: space-between;
margin-bottom: 1rem;
padding-bottom: 0.75rem;
border-bottom: 1px solid hsl(var(--border));
}
.section-header h3 {
font-size: 1rem;
font-weight: 600;
color: hsl(var(--foreground));
margin: 0;
}
/* Settings List */
.api-settings-list {
display: flex;
flex-direction: column;
gap: 0.75rem;
}
/* Settings Card */
.api-settings-card {
background: hsl(var(--background));
border: 1px solid hsl(var(--border));
border-radius: 0.5rem;
padding: 1rem;
transition: all 0.2s ease;
}
.api-settings-card:hover {
border-color: hsl(var(--primary) / 0.3);
box-shadow: 0 2px 8px hsl(var(--primary) / 0.1);
}
.api-settings-card.disabled {
opacity: 0.6;
background: hsl(var(--muted) / 0.3);
}
/* Card Header */
.card-header {
display: flex;
align-items: center;
justify-content: space-between;
margin-bottom: 0.75rem;
}
.card-info {
display: flex;
align-items: center;
gap: 0.75rem;
flex: 1;
}
.card-info h4 {
font-size: 0.9375rem;
font-weight: 600;
color: hsl(var(--foreground));
margin: 0;
}
.card-actions {
display: flex;
align-items: center;
gap: 0.5rem;
}
/* Card Body */
.card-body {
display: flex;
flex-direction: column;
gap: 0.75rem;
}
.card-meta {
display: flex;
flex-wrap: wrap;
gap: 1rem;
font-size: 0.8125rem;
color: hsl(var(--muted-foreground));
}
.card-meta span {
display: flex;
align-items: center;
gap: 0.375rem;
}
.card-meta i {
font-size: 0.875rem;
}
/* Provider Type Badge */
.provider-type-badge {
display: inline-flex;
align-items: center;
padding: 0.25rem 0.625rem;
font-size: 0.6875rem;
font-weight: 600;
text-transform: uppercase;
background: hsl(var(--primary) / 0.1);
color: hsl(var(--primary));
border-radius: 9999px;
letter-spacing: 0.03em;
}
/* Endpoint ID */
.endpoint-id {
font-family: 'SF Mono', 'Consolas', 'Liberation Mono', monospace;
font-size: 0.75rem;
padding: 0.25rem 0.5rem;
background: hsl(var(--muted) / 0.5);
border-radius: 0.25rem;
color: hsl(var(--primary));
}
/* Usage Hint */
.usage-hint {
display: flex;
align-items: center;
gap: 0.5rem;
padding: 0.625rem 0.75rem;
background: hsl(var(--muted) / 0.3);
border-radius: 0.375rem;
font-size: 0.75rem;
color: hsl(var(--muted-foreground));
margin-top: 0.375rem;
}
.usage-hint code {
font-family: 'SF Mono', 'Consolas', 'Liberation Mono', monospace;
font-size: 0.6875rem;
color: hsl(var(--foreground));
}
/* Status Badge */
.status-badge {
display: inline-flex;
align-items: center;
padding: 0.25rem 0.625rem;
font-size: 0.6875rem;
font-weight: 600;
border-radius: 9999px;
}
.status-badge.status-enabled {
background: hsl(142 76% 36% / 0.1);
color: hsl(142 76% 36%);
}
.status-badge.status-disabled {
background: hsl(var(--muted) / 0.5);
color: hsl(var(--muted-foreground));
}
/* Empty State */
.empty-state {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
padding: 2.5rem 1rem;
text-align: center;
color: hsl(var(--muted-foreground));
}
.empty-icon {
font-size: 3rem;
opacity: 0.3;
margin-bottom: 0.75rem;
}
.empty-state p {
font-size: 0.875rem;
margin: 0;
}
/* Cache Settings Panel */
.cache-settings-panel {
padding: 1rem;
}
.cache-settings-content {
display: flex;
flex-direction: column;
gap: 1rem;
}
.cache-stats {
display: flex;
flex-direction: column;
gap: 0.75rem;
padding: 1rem;
background: hsl(var(--muted) / 0.3);
border-radius: 0.5rem;
}
.stat-item {
display: flex;
justify-content: space-between;
align-items: center;
font-size: 0.8125rem;
}
.stat-label {
color: hsl(var(--muted-foreground));
font-weight: 500;
}
.stat-value {
color: hsl(var(--foreground));
font-weight: 600;
font-family: 'SF Mono', 'Consolas', 'Liberation Mono', monospace;
}
/* Progress Bar */
.progress-bar {
width: 100%;
height: 8px;
background: hsl(var(--muted) / 0.5);
border-radius: 9999px;
overflow: hidden;
}
.progress-fill {
height: 100%;
background: hsl(var(--primary));
border-radius: 9999px;
transition: width 0.3s ease;
}
/* ========================================
* Form Styles
* ======================================== */
.api-settings-form {
display: flex;
flex-direction: column;
gap: 1rem;
}
.form-group {
display: flex;
flex-direction: column;
gap: 0.5rem;
}
.form-group label {
font-size: 0.8125rem;
font-weight: 500;
color: hsl(var(--foreground));
}
.form-hint {
font-size: 0.75rem;
color: hsl(var(--muted-foreground));
font-style: italic;
}
.text-muted {
color: hsl(var(--muted-foreground));
font-weight: 400;
}
/* API Key Input Group */
.api-key-input-group {
display: flex;
gap: 0.5rem;
}
.api-key-input-group input {
flex: 1;
}
.api-key-input-group .btn-icon {
flex-shrink: 0;
}
/* Checkbox Label */
.checkbox-label {
display: flex;
align-items: center;
gap: 0.5rem;
font-size: 0.8125rem;
color: hsl(var(--foreground));
cursor: pointer;
}
.checkbox-label input[type="checkbox"] {
width: 1rem;
height: 1rem;
cursor: pointer;
}
/* Fieldset */
.form-fieldset {
border: 1px solid hsl(var(--border));
border-radius: 0.5rem;
padding: 1rem;
margin: 0;
}
.form-fieldset legend {
font-size: 0.875rem;
font-weight: 600;
color: hsl(var(--foreground));
padding: 0 0.5rem;
}
/* Modal Actions */
.modal-actions {
display: flex;
gap: 0.75rem;
justify-content: flex-end;
margin-top: 1rem;
padding-top: 1rem;
border-top: 1px solid hsl(var(--border));
}
/* ========================================
* Responsive Design
* ======================================== */
@media (min-width: 768px) {
.api-settings-container {
padding: 1.5rem;
}
.card-meta {
gap: 1.5rem;
}
}
@media (max-width: 640px) {
.section-header {
flex-direction: column;
align-items: flex-start;
gap: 0.75rem;
}
.card-header {
flex-direction: column;
align-items: flex-start;
gap: 0.75rem;
}
.card-actions {
align-self: flex-end;
}
.card-meta {
flex-direction: column;
gap: 0.5rem;
}
.modal-actions {
flex-direction: column;
}
.modal-actions .btn {
width: 100%;
}
}
/* Error Message */
.error-message {
display: flex;
align-items: center;
justify-content: center;
padding: 2rem;
font-size: 0.875rem;
color: hsl(var(--destructive));
text-align: center;
}

View File

@@ -149,6 +149,12 @@ function initNavigation() {
} else {
console.error('renderCodexLensManager not defined - please refresh the page');
}
} else if (currentView === 'api-settings') {
if (typeof renderApiSettings === 'function') {
renderApiSettings();
} else {
console.error('renderApiSettings not defined - please refresh the page');
}
}
});
});
@@ -191,6 +197,8 @@ function updateContentTitle() {
titleEl.textContent = t('title.coreMemory');
} else if (currentView === 'codexlens-manager') {
titleEl.textContent = t('title.codexLensManager');
} else if (currentView === 'api-settings') {
titleEl.textContent = t('title.apiSettings');
} else if (currentView === 'liteTasks') {
const names = { 'lite-plan': t('title.litePlanSessions'), 'lite-fix': t('title.liteFixSessions') };
titleEl.textContent = names[currentLiteType] || t('title.liteTasks');

View File

@@ -1331,6 +1331,62 @@ const i18n = {
'claude.unsupportedFileType': 'Unsupported file type',
'claude.loadFileError': 'Failed to load file',
// API Settings
'nav.apiSettings': 'API Settings',
'title.apiSettings': 'API Settings',
'apiSettings.providers': 'Providers',
'apiSettings.customEndpoints': 'Custom Endpoints',
'apiSettings.cacheSettings': 'Cache Settings',
'apiSettings.addProvider': 'Add Provider',
'apiSettings.editProvider': 'Edit Provider',
'apiSettings.deleteProvider': 'Delete Provider',
'apiSettings.addEndpoint': 'Add Endpoint',
'apiSettings.editEndpoint': 'Edit Endpoint',
'apiSettings.deleteEndpoint': 'Delete Endpoint',
'apiSettings.providerType': 'Provider Type',
'apiSettings.displayName': 'Display Name',
'apiSettings.apiKey': 'API Key',
'apiSettings.apiBaseUrl': 'API Base URL',
'apiSettings.useEnvVar': 'Use environment variable',
'apiSettings.enableProvider': 'Enable provider',
'apiSettings.testConnection': 'Test Connection',
'apiSettings.endpointId': 'Endpoint ID',
'apiSettings.endpointIdHint': 'Usage: ccw cli -p "..." --model <endpoint-id>',
'apiSettings.provider': 'Provider',
'apiSettings.model': 'Model',
'apiSettings.selectModel': 'Select model',
'apiSettings.cacheStrategy': 'Cache Strategy',
'apiSettings.enableContextCaching': 'Enable Context Caching',
'apiSettings.cacheTTL': 'TTL (minutes)',
'apiSettings.cacheMaxSize': 'Max Size (KB)',
'apiSettings.autoCachePatterns': 'Auto-cache file patterns',
'apiSettings.enableGlobalCaching': 'Enable Global Caching',
'apiSettings.cacheUsed': 'Used',
'apiSettings.cacheEntries': 'Entries',
'apiSettings.clearCache': 'Clear Cache',
'apiSettings.noProviders': 'No providers configured',
'apiSettings.noEndpoints': 'No endpoints configured',
'apiSettings.enabled': 'Enabled',
'apiSettings.disabled': 'Disabled',
'apiSettings.cacheEnabled': 'Cache Enabled',
'apiSettings.cacheDisabled': 'Cache Disabled',
'apiSettings.providerSaved': 'Provider saved successfully',
'apiSettings.providerDeleted': 'Provider deleted successfully',
'apiSettings.endpointSaved': 'Endpoint saved successfully',
'apiSettings.endpointDeleted': 'Endpoint deleted successfully',
'apiSettings.cacheCleared': 'Cache cleared successfully',
'apiSettings.cacheSettingsUpdated': 'Cache settings updated',
'apiSettings.confirmDeleteProvider': 'Are you sure you want to delete this provider?',
'apiSettings.confirmDeleteEndpoint': 'Are you sure you want to delete this endpoint?',
'apiSettings.confirmClearCache': 'Are you sure you want to clear the cache?',
'apiSettings.connectionSuccess': 'Connection successful',
'apiSettings.connectionFailed': 'Connection failed',
'apiSettings.saveProviderFirst': 'Please save the provider first',
'apiSettings.addProviderFirst': 'Please add a provider first',
'apiSettings.failedToLoad': 'Failed to load API settings',
'apiSettings.toggleVisibility': 'Toggle visibility',
// Common
'common.cancel': 'Cancel',
'common.optional': '(Optional)',
@@ -2799,6 +2855,62 @@ const i18n = {
'claudeManager.saved': 'File saved successfully',
'claudeManager.saveError': 'Failed to save file',
// API Settings
'nav.apiSettings': 'API 设置',
'title.apiSettings': 'API 设置',
'apiSettings.providers': '提供商',
'apiSettings.customEndpoints': '自定义端点',
'apiSettings.cacheSettings': '缓存设置',
'apiSettings.addProvider': '添加提供商',
'apiSettings.editProvider': '编辑提供商',
'apiSettings.deleteProvider': '删除提供商',
'apiSettings.addEndpoint': '添加端点',
'apiSettings.editEndpoint': '编辑端点',
'apiSettings.deleteEndpoint': '删除端点',
'apiSettings.providerType': '提供商类型',
'apiSettings.displayName': '显示名称',
'apiSettings.apiKey': 'API 密钥',
'apiSettings.apiBaseUrl': 'API 基础 URL',
'apiSettings.useEnvVar': '使用环境变量',
'apiSettings.enableProvider': '启用提供商',
'apiSettings.testConnection': '测试连接',
'apiSettings.endpointId': '端点 ID',
'apiSettings.endpointIdHint': '用法: ccw cli -p "..." --model <端点ID>',
'apiSettings.provider': '提供商',
'apiSettings.model': '模型',
'apiSettings.selectModel': '选择模型',
'apiSettings.cacheStrategy': '缓存策略',
'apiSettings.enableContextCaching': '启用上下文缓存',
'apiSettings.cacheTTL': 'TTL (分钟)',
'apiSettings.cacheMaxSize': '最大大小 (KB)',
'apiSettings.autoCachePatterns': '自动缓存文件模式',
'apiSettings.enableGlobalCaching': '启用全局缓存',
'apiSettings.cacheUsed': '已使用',
'apiSettings.cacheEntries': '条目数',
'apiSettings.clearCache': '清除缓存',
'apiSettings.noProviders': '未配置提供商',
'apiSettings.noEndpoints': '未配置端点',
'apiSettings.enabled': '已启用',
'apiSettings.disabled': '已禁用',
'apiSettings.cacheEnabled': '缓存已启用',
'apiSettings.cacheDisabled': '缓存已禁用',
'apiSettings.providerSaved': '提供商保存成功',
'apiSettings.providerDeleted': '提供商删除成功',
'apiSettings.endpointSaved': '端点保存成功',
'apiSettings.endpointDeleted': '端点删除成功',
'apiSettings.cacheCleared': '缓存清除成功',
'apiSettings.cacheSettingsUpdated': '缓存设置已更新',
'apiSettings.confirmDeleteProvider': '确定要删除此提供商吗?',
'apiSettings.confirmDeleteEndpoint': '确定要删除此端点吗?',
'apiSettings.confirmClearCache': '确定要清除缓存吗?',
'apiSettings.connectionSuccess': '连接成功',
'apiSettings.connectionFailed': '连接失败',
'apiSettings.saveProviderFirst': '请先保存提供商',
'apiSettings.addProviderFirst': '请先添加提供商',
'apiSettings.failedToLoad': '加载 API 设置失败',
'apiSettings.toggleVisibility': '切换可见性',
// Common
'common.cancel': '取消',
'common.optional': '(可选)',

View File

@@ -0,0 +1,815 @@
// API Settings View
// Manages LiteLLM API providers, custom endpoints, and cache settings
// ========== State Management ==========
var apiSettingsData = null;
var providerModels = {};
var currentModal = null;
// ========== Data Loading ==========
/**
* Load API configuration
*/
async function loadApiSettings() {
try {
var response = await fetch('/api/litellm-api/config');
if (!response.ok) throw new Error('Failed to load API settings');
apiSettingsData = await response.json();
return apiSettingsData;
} catch (err) {
console.error('Failed to load API settings:', err);
showRefreshToast(t('common.error') + ': ' + err.message, 'error');
return null;
}
}
/**
* Load available models for a provider type
*/
async function loadProviderModels(providerType) {
try {
var response = await fetch('/api/litellm-api/models/' + providerType);
if (!response.ok) throw new Error('Failed to load models');
var data = await response.json();
providerModels[providerType] = data.models || [];
return data.models;
} catch (err) {
console.error('Failed to load provider models:', err);
return [];
}
}
/**
* Load cache statistics
*/
async function loadCacheStats() {
try {
var response = await fetch('/api/litellm-api/cache/stats');
if (!response.ok) throw new Error('Failed to load cache stats');
return await response.json();
} catch (err) {
console.error('Failed to load cache stats:', err);
return { enabled: false, totalSize: 0, maxSize: 104857600, entries: 0 };
}
}
// ========== Provider Management ==========
/**
* Show add provider modal
*/
async function showAddProviderModal() {
var modalHtml = '<div class="generic-modal-overlay active" id="providerModal">' +
'<div class="generic-modal">' +
'<div class="generic-modal-header">' +
'<h3 class="generic-modal-title">' + t('apiSettings.addProvider') + '</h3>' +
'<button class="generic-modal-close" onclick="closeProviderModal()">&times;</button>' +
'</div>' +
'<div class="generic-modal-body">' +
'<form id="providerForm" class="api-settings-form">' +
'<div class="form-group">' +
'<label for="provider-type">' + t('apiSettings.providerType') + '</label>' +
'<select id="provider-type" class="cli-input" required>' +
'<option value="openai">OpenAI</option>' +
'<option value="anthropic">Anthropic</option>' +
'<option value="google">Google</option>' +
'<option value="ollama">Ollama</option>' +
'<option value="azure">Azure</option>' +
'<option value="mistral">Mistral AI</option>' +
'<option value="deepseek">DeepSeek</option>' +
'<option value="custom">Custom</option>' +
'</select>' +
'</div>' +
'<div class="form-group">' +
'<label for="provider-name">' + t('apiSettings.displayName') + '</label>' +
'<input type="text" id="provider-name" class="cli-input" placeholder="My OpenAI" required />' +
'</div>' +
'<div class="form-group">' +
'<label for="provider-apikey">' + t('apiSettings.apiKey') + '</label>' +
'<div class="api-key-input-group">' +
'<input type="password" id="provider-apikey" class="cli-input" placeholder="sk-..." required />' +
'<button type="button" class="btn-icon" onclick="toggleApiKeyVisibility(\'provider-apikey\')" title="' + t('apiSettings.toggleVisibility') + '">' +
'<i data-lucide="eye"></i>' +
'</button>' +
'</div>' +
'<label class="checkbox-label">' +
'<input type="checkbox" id="use-env-var" onchange="toggleEnvVarInput()" /> ' +
t('apiSettings.useEnvVar') +
'</label>' +
'<input type="text" id="env-var-name" class="cli-input" placeholder="OPENAI_API_KEY" style="display:none; margin-top: 0.5rem;" />' +
'</div>' +
'<div class="form-group">' +
'<label for="provider-apibase">' + t('apiSettings.apiBaseUrl') + ' <span class="text-muted">(' + t('common.optional') + ')</span></label>' +
'<input type="text" id="provider-apibase" class="cli-input" placeholder="https://api.openai.com/v1" />' +
'</div>' +
'<div class="form-group">' +
'<label class="checkbox-label">' +
'<input type="checkbox" id="provider-enabled" checked /> ' +
t('apiSettings.enableProvider') +
'</label>' +
'</div>' +
'<div class="modal-actions">' +
'<button type="button" class="btn btn-secondary" onclick="testProviderConnection()">' +
'<i data-lucide="wifi"></i> ' + t('apiSettings.testConnection') +
'</button>' +
'<button type="button" class="btn btn-secondary" onclick="closeProviderModal()">' + t('common.cancel') + '</button>' +
'<button type="submit" class="btn btn-primary">' +
'<i data-lucide="save"></i> ' + t('common.save') +
'</button>' +
'</div>' +
'</form>' +
'</div>' +
'</div>' +
'</div>';
document.body.insertAdjacentHTML('beforeend', modalHtml);
document.getElementById('providerForm').addEventListener('submit', async function(e) {
e.preventDefault();
await saveProvider();
});
if (window.lucide) lucide.createIcons();
}
/**
* Show edit provider modal
*/
async function showEditProviderModal(providerId) {
if (!apiSettingsData) return;
var provider = apiSettingsData.providers?.find(function(p) { return p.id === providerId; });
if (!provider) return;
await showAddProviderModal();
// Update modal title
document.querySelector('#providerModal .generic-modal-title').textContent = t('apiSettings.editProvider');
// Populate form
document.getElementById('provider-type').value = provider.type;
document.getElementById('provider-name').value = provider.name;
document.getElementById('provider-apikey').value = provider.apiKey;
if (provider.apiBase) {
document.getElementById('provider-apibase').value = provider.apiBase;
}
document.getElementById('provider-enabled').checked = provider.enabled !== false;
// Store provider ID for update
document.getElementById('providerForm').dataset.providerId = providerId;
}
/**
* Save provider (create or update)
*/
async function saveProvider() {
var form = document.getElementById('providerForm');
var providerId = form.dataset.providerId;
var useEnvVar = document.getElementById('use-env-var').checked;
var apiKey = useEnvVar
? '${' + document.getElementById('env-var-name').value + '}'
: document.getElementById('provider-apikey').value;
var providerData = {
type: document.getElementById('provider-type').value,
name: document.getElementById('provider-name').value,
apiKey: apiKey,
apiBase: document.getElementById('provider-apibase').value || undefined,
enabled: document.getElementById('provider-enabled').checked
};
try {
var url = providerId
? '/api/litellm-api/providers/' + providerId
: '/api/litellm-api/providers';
var method = providerId ? 'PUT' : 'POST';
var response = await fetch(url, {
method: method,
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(providerData)
});
if (!response.ok) throw new Error('Failed to save provider');
var result = await response.json();
showRefreshToast(t('apiSettings.providerSaved'), 'success');
closeProviderModal();
await renderApiSettings();
} catch (err) {
console.error('Failed to save provider:', err);
showRefreshToast(t('common.error') + ': ' + err.message, 'error');
}
}
/**
* Delete provider
*/
async function deleteProvider(providerId) {
if (!confirm(t('apiSettings.confirmDeleteProvider'))) return;
try {
var response = await fetch('/api/litellm-api/providers/' + providerId, {
method: 'DELETE'
});
if (!response.ok) throw new Error('Failed to delete provider');
showRefreshToast(t('apiSettings.providerDeleted'), 'success');
await renderApiSettings();
} catch (err) {
console.error('Failed to delete provider:', err);
showRefreshToast(t('common.error') + ': ' + err.message, 'error');
}
}
/**
* Test provider connection
*/
async function testProviderConnection() {
var form = document.getElementById('providerForm');
var providerId = form.dataset.providerId;
if (!providerId) {
showRefreshToast(t('apiSettings.saveProviderFirst'), 'warning');
return;
}
try {
var response = await fetch('/api/litellm-api/providers/' + providerId + '/test', {
method: 'POST'
});
if (!response.ok) throw new Error('Failed to test provider');
var result = await response.json();
if (result.success) {
showRefreshToast(t('apiSettings.connectionSuccess'), 'success');
} else {
showRefreshToast(t('apiSettings.connectionFailed') + ': ' + (result.error || 'Unknown error'), 'error');
}
} catch (err) {
console.error('Failed to test provider:', err);
showRefreshToast(t('common.error') + ': ' + err.message, 'error');
}
}
/**
* Close provider modal
*/
function closeProviderModal() {
var modal = document.getElementById('providerModal');
if (modal) modal.remove();
}
/**
* Toggle API key visibility
*/
function toggleApiKeyVisibility(inputId) {
var input = document.getElementById(inputId);
var icon = event.target.closest('button').querySelector('i');
if (input.type === 'password') {
input.type = 'text';
icon.setAttribute('data-lucide', 'eye-off');
} else {
input.type = 'password';
icon.setAttribute('data-lucide', 'eye');
}
if (window.lucide) lucide.createIcons();
}
/**
* Toggle environment variable input
*/
function toggleEnvVarInput() {
var useEnvVar = document.getElementById('use-env-var').checked;
var apiKeyInput = document.getElementById('provider-apikey');
var envVarInput = document.getElementById('env-var-name');
if (useEnvVar) {
apiKeyInput.style.display = 'none';
apiKeyInput.required = false;
envVarInput.style.display = 'block';
envVarInput.required = true;
} else {
apiKeyInput.style.display = 'block';
apiKeyInput.required = true;
envVarInput.style.display = 'none';
envVarInput.required = false;
}
}
// ========== Endpoint Management ==========
/**
* Show add endpoint modal
*/
async function showAddEndpointModal() {
if (!apiSettingsData || !apiSettingsData.providers || apiSettingsData.providers.length === 0) {
showRefreshToast(t('apiSettings.addProviderFirst'), 'warning');
return;
}
var providerOptions = apiSettingsData.providers
.filter(function(p) { return p.enabled !== false; })
.map(function(p) {
return '<option value="' + p.id + '">' + p.name + ' (' + p.type + ')</option>';
})
.join('');
var modalHtml = '<div class="generic-modal-overlay active" id="endpointModal">' +
'<div class="generic-modal">' +
'<div class="generic-modal-header">' +
'<h3 class="generic-modal-title">' + t('apiSettings.addEndpoint') + '</h3>' +
'<button class="generic-modal-close" onclick="closeEndpointModal()">&times;</button>' +
'</div>' +
'<div class="generic-modal-body">' +
'<form id="endpointForm" class="api-settings-form">' +
'<div class="form-group">' +
'<label for="endpoint-id">' + t('apiSettings.endpointId') + '</label>' +
'<input type="text" id="endpoint-id" class="cli-input" placeholder="my-gpt4o" required />' +
'<small class="form-hint">' + t('apiSettings.endpointIdHint') + '</small>' +
'</div>' +
'<div class="form-group">' +
'<label for="endpoint-name">' + t('apiSettings.displayName') + '</label>' +
'<input type="text" id="endpoint-name" class="cli-input" placeholder="GPT-4o for Code Review" required />' +
'</div>' +
'<div class="form-group">' +
'<label for="endpoint-provider">' + t('apiSettings.provider') + '</label>' +
'<select id="endpoint-provider" class="cli-input" onchange="loadModelsForProvider()" required>' +
providerOptions +
'</select>' +
'</div>' +
'<div class="form-group">' +
'<label for="endpoint-model">' + t('apiSettings.model') + '</label>' +
'<select id="endpoint-model" class="cli-input" required>' +
'<option value="">' + t('apiSettings.selectModel') + '</option>' +
'</select>' +
'</div>' +
'<fieldset class="form-fieldset">' +
'<legend>' + t('apiSettings.cacheStrategy') + '</legend>' +
'<label class="checkbox-label">' +
'<input type="checkbox" id="cache-enabled" onchange="toggleCacheSettings()" /> ' +
t('apiSettings.enableContextCaching') +
'</label>' +
'<div id="cache-settings" style="display:none;">' +
'<div class="form-group">' +
'<label for="cache-ttl">' + t('apiSettings.cacheTTL') + '</label>' +
'<input type="number" id="cache-ttl" class="cli-input" value="60" min="1" />' +
'</div>' +
'<div class="form-group">' +
'<label for="cache-maxsize">' + t('apiSettings.cacheMaxSize') + '</label>' +
'<input type="number" id="cache-maxsize" class="cli-input" value="512" min="1" />' +
'</div>' +
'<div class="form-group">' +
'<label for="cache-patterns">' + t('apiSettings.autoCachePatterns') + '</label>' +
'<input type="text" id="cache-patterns" class="cli-input" placeholder="*.ts, *.md, CLAUDE.md" />' +
'</div>' +
'</div>' +
'</fieldset>' +
'<div class="modal-actions">' +
'<button type="button" class="btn btn-secondary" onclick="closeEndpointModal()">' + t('common.cancel') + '</button>' +
'<button type="submit" class="btn btn-primary">' +
'<i data-lucide="save"></i> ' + t('common.save') +
'</button>' +
'</div>' +
'</form>' +
'</div>' +
'</div>' +
'</div>';
document.body.insertAdjacentHTML('beforeend', modalHtml);
document.getElementById('endpointForm').addEventListener('submit', async function(e) {
e.preventDefault();
await saveEndpoint();
});
// Load models for first provider
await loadModelsForProvider();
if (window.lucide) lucide.createIcons();
}
/**
* Show edit endpoint modal
*/
async function showEditEndpointModal(endpointId) {
if (!apiSettingsData) return;
var endpoint = apiSettingsData.endpoints?.find(function(e) { return e.id === endpointId; });
if (!endpoint) return;
await showAddEndpointModal();
// Update modal title
document.querySelector('#endpointModal .generic-modal-title').textContent = t('apiSettings.editEndpoint');
// Populate form
document.getElementById('endpoint-id').value = endpoint.id;
document.getElementById('endpoint-id').disabled = true;
document.getElementById('endpoint-name').value = endpoint.name;
document.getElementById('endpoint-provider').value = endpoint.providerId;
await loadModelsForProvider();
document.getElementById('endpoint-model').value = endpoint.model;
if (endpoint.cacheStrategy) {
document.getElementById('cache-enabled').checked = endpoint.cacheStrategy.enabled;
if (endpoint.cacheStrategy.enabled) {
toggleCacheSettings();
document.getElementById('cache-ttl').value = endpoint.cacheStrategy.ttlMinutes || 60;
document.getElementById('cache-maxsize').value = endpoint.cacheStrategy.maxSizeKB || 512;
document.getElementById('cache-patterns').value = endpoint.cacheStrategy.autoCachePatterns?.join(', ') || '';
}
}
// Store endpoint ID for update
document.getElementById('endpointForm').dataset.endpointId = endpointId;
}
/**
* Save endpoint (create or update)
*/
async function saveEndpoint() {
var form = document.getElementById('endpointForm');
var endpointId = form.dataset.endpointId || document.getElementById('endpoint-id').value;
var cacheEnabled = document.getElementById('cache-enabled').checked;
var cacheStrategy = cacheEnabled ? {
enabled: true,
ttlMinutes: parseInt(document.getElementById('cache-ttl').value) || 60,
maxSizeKB: parseInt(document.getElementById('cache-maxsize').value) || 512,
autoCachePatterns: document.getElementById('cache-patterns').value
.split(',')
.map(function(p) { return p.trim(); })
.filter(function(p) { return p; })
} : { enabled: false };
var endpointData = {
id: endpointId,
name: document.getElementById('endpoint-name').value,
providerId: document.getElementById('endpoint-provider').value,
model: document.getElementById('endpoint-model').value,
cacheStrategy: cacheStrategy
};
try {
var url = form.dataset.endpointId
? '/api/litellm-api/endpoints/' + form.dataset.endpointId
: '/api/litellm-api/endpoints';
var method = form.dataset.endpointId ? 'PUT' : 'POST';
var response = await fetch(url, {
method: method,
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify(endpointData)
});
if (!response.ok) throw new Error('Failed to save endpoint');
var result = await response.json();
showRefreshToast(t('apiSettings.endpointSaved'), 'success');
closeEndpointModal();
await renderApiSettings();
} catch (err) {
console.error('Failed to save endpoint:', err);
showRefreshToast(t('common.error') + ': ' + err.message, 'error');
}
}
/**
* Delete endpoint
*/
async function deleteEndpoint(endpointId) {
if (!confirm(t('apiSettings.confirmDeleteEndpoint'))) return;
try {
var response = await fetch('/api/litellm-api/endpoints/' + endpointId, {
method: 'DELETE'
});
if (!response.ok) throw new Error('Failed to delete endpoint');
showRefreshToast(t('apiSettings.endpointDeleted'), 'success');
await renderApiSettings();
} catch (err) {
console.error('Failed to delete endpoint:', err);
showRefreshToast(t('common.error') + ': ' + err.message, 'error');
}
}
/**
* Close endpoint modal
*/
function closeEndpointModal() {
var modal = document.getElementById('endpointModal');
if (modal) modal.remove();
}
/**
* Load models for selected provider
*/
async function loadModelsForProvider() {
var providerSelect = document.getElementById('endpoint-provider');
var modelSelect = document.getElementById('endpoint-model');
if (!providerSelect || !modelSelect) return;
var providerId = providerSelect.value;
var provider = apiSettingsData.providers.find(function(p) { return p.id === providerId; });
if (!provider) return;
// Load models for provider type
var models = await loadProviderModels(provider.type);
modelSelect.innerHTML = '<option value="">' + t('apiSettings.selectModel') + '</option>' +
models.map(function(m) {
var desc = m.description ? ' - ' + m.description : '';
return '<option value="' + m.id + '">' + m.name + desc + '</option>';
}).join('');
}
/**
* Toggle cache settings visibility
*/
function toggleCacheSettings() {
var enabled = document.getElementById('cache-enabled').checked;
var settings = document.getElementById('cache-settings');
settings.style.display = enabled ? 'block' : 'none';
}
// ========== Cache Management ==========
/**
* Clear cache
*/
async function clearCache() {
if (!confirm(t('apiSettings.confirmClearCache'))) return;
try {
var response = await fetch('/api/litellm-api/cache/clear', {
method: 'POST'
});
if (!response.ok) throw new Error('Failed to clear cache');
var result = await response.json();
showRefreshToast(t('apiSettings.cacheCleared') + ' (' + result.removed + ' entries)', 'success');
await renderApiSettings();
} catch (err) {
console.error('Failed to clear cache:', err);
showRefreshToast(t('common.error') + ': ' + err.message, 'error');
}
}
/**
* Toggle global cache
*/
async function toggleGlobalCache() {
var enabled = document.getElementById('global-cache-enabled').checked;
try {
var response = await fetch('/api/litellm-api/config/cache', {
method: 'PUT',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ enabled: enabled })
});
if (!response.ok) throw new Error('Failed to update cache settings');
showRefreshToast(t('apiSettings.cacheSettingsUpdated'), 'success');
} catch (err) {
console.error('Failed to update cache settings:', err);
showRefreshToast(t('common.error') + ': ' + err.message, 'error');
// Revert checkbox
document.getElementById('global-cache-enabled').checked = !enabled;
}
}
// ========== Rendering ==========
/**
* Render API Settings page
*/
async function renderApiSettings() {
var container = document.getElementById('mainContent');
if (!container) return;
// Hide stats grid and search
var statsGrid = document.getElementById('statsGrid');
var searchInput = document.getElementById('searchInput');
if (statsGrid) statsGrid.style.display = 'none';
if (searchInput) searchInput.parentElement.style.display = 'none';
// Load data
await loadApiSettings();
var cacheStats = await loadCacheStats();
if (!apiSettingsData) {
container.innerHTML = '<div class="api-settings-container">' +
'<div class="error-message">' + t('apiSettings.failedToLoad') + '</div>' +
'</div>';
return;
}
container.innerHTML = '<div class="api-settings-container">' +
'<div class="api-settings-section">' +
'<div class="section-header">' +
'<h3>' + t('apiSettings.providers') + '</h3>' +
'<button class="btn btn-primary" onclick="showAddProviderModal()">' +
'<i data-lucide="plus"></i> ' + t('apiSettings.addProvider') +
'</button>' +
'</div>' +
'<div id="providers-list" class="api-settings-list"></div>' +
'</div>' +
'<div class="api-settings-section">' +
'<div class="section-header">' +
'<h3>' + t('apiSettings.customEndpoints') + '</h3>' +
'<button class="btn btn-primary" onclick="showAddEndpointModal()">' +
'<i data-lucide="plus"></i> ' + t('apiSettings.addEndpoint') +
'</button>' +
'</div>' +
'<div id="endpoints-list" class="api-settings-list"></div>' +
'</div>' +
'<div class="api-settings-section">' +
'<div class="section-header">' +
'<h3>' + t('apiSettings.cacheSettings') + '</h3>' +
'</div>' +
'<div id="cache-settings-panel" class="cache-settings-panel"></div>' +
'</div>' +
'</div>';
renderProvidersList();
renderEndpointsList();
renderCacheSettings(cacheStats);
if (window.lucide) lucide.createIcons();
}
/**
* Render providers list
*/
function renderProvidersList() {
var container = document.getElementById('providers-list');
if (!container) return;
var providers = apiSettingsData.providers || [];
if (providers.length === 0) {
container.innerHTML = '<div class="empty-state">' +
'<i data-lucide="cloud-off" class="empty-icon"></i>' +
'<p>' + t('apiSettings.noProviders') + '</p>' +
'</div>';
if (window.lucide) lucide.createIcons();
return;
}
container.innerHTML = providers.map(function(provider) {
var statusClass = provider.enabled === false ? 'disabled' : 'enabled';
var statusText = provider.enabled === false ? t('apiSettings.disabled') : t('apiSettings.enabled');
return '<div class="api-settings-card provider-card ' + statusClass + '">' +
'<div class="card-header">' +
'<div class="card-info">' +
'<h4>' + provider.name + '</h4>' +
'<span class="provider-type-badge">' + provider.type + '</span>' +
'</div>' +
'<div class="card-actions">' +
'<button class="btn-icon" onclick="showEditProviderModal(\'' + provider.id + '\')" title="' + t('common.edit') + '">' +
'<i data-lucide="edit"></i>' +
'</button>' +
'<button class="btn-icon btn-danger" onclick="deleteProvider(\'' + provider.id + '\')" title="' + t('common.delete') + '">' +
'<i data-lucide="trash-2"></i>' +
'</button>' +
'</div>' +
'</div>' +
'<div class="card-body">' +
'<div class="card-meta">' +
'<span><i data-lucide="key"></i> ' + maskApiKey(provider.apiKey) + '</span>' +
(provider.apiBase ? '<span><i data-lucide="globe"></i> ' + provider.apiBase + '</span>' : '') +
'<span class="status-badge status-' + statusClass + '">' + statusText + '</span>' +
'</div>' +
'</div>' +
'</div>';
}).join('');
if (window.lucide) lucide.createIcons();
}
/**
* Render endpoints list
*/
function renderEndpointsList() {
var container = document.getElementById('endpoints-list');
if (!container) return;
var endpoints = apiSettingsData.endpoints || [];
if (endpoints.length === 0) {
container.innerHTML = '<div class="empty-state">' +
'<i data-lucide="layers-off" class="empty-icon"></i>' +
'<p>' + t('apiSettings.noEndpoints') + '</p>' +
'</div>';
if (window.lucide) lucide.createIcons();
return;
}
container.innerHTML = endpoints.map(function(endpoint) {
var provider = apiSettingsData.providers.find(function(p) { return p.id === endpoint.providerId; });
var providerName = provider ? provider.name : endpoint.providerId;
var cacheStatus = endpoint.cacheStrategy?.enabled
? t('apiSettings.cacheEnabled') + ' (' + endpoint.cacheStrategy.ttlMinutes + ' min)'
: t('apiSettings.cacheDisabled');
return '<div class="api-settings-card endpoint-card">' +
'<div class="card-header">' +
'<div class="card-info">' +
'<h4>' + endpoint.name + '</h4>' +
'<code class="endpoint-id">' + endpoint.id + '</code>' +
'</div>' +
'<div class="card-actions">' +
'<button class="btn-icon" onclick="showEditEndpointModal(\'' + endpoint.id + '\')" title="' + t('common.edit') + '">' +
'<i data-lucide="edit"></i>' +
'</button>' +
'<button class="btn-icon btn-danger" onclick="deleteEndpoint(\'' + endpoint.id + '\')" title="' + t('common.delete') + '">' +
'<i data-lucide="trash-2"></i>' +
'</button>' +
'</div>' +
'</div>' +
'<div class="card-body">' +
'<div class="card-meta">' +
'<span><i data-lucide="server"></i> ' + providerName + '</span>' +
'<span><i data-lucide="cpu"></i> ' + endpoint.model + '</span>' +
'<span><i data-lucide="database"></i> ' + cacheStatus + '</span>' +
'</div>' +
'<div class="usage-hint">' +
'<i data-lucide="terminal"></i> ' +
'<code>ccw cli -p "..." --model ' + endpoint.id + '</code>' +
'</div>' +
'</div>' +
'</div>';
}).join('');
if (window.lucide) lucide.createIcons();
}
/**
* Render cache settings panel
*/
function renderCacheSettings(stats) {
var container = document.getElementById('cache-settings-panel');
if (!container) return;
var globalSettings = apiSettingsData.globalCache || { enabled: false };
var usedMB = (stats.totalSize / 1024 / 1024).toFixed(2);
var maxMB = (stats.maxSize / 1024 / 1024).toFixed(0);
var usagePercent = stats.maxSize > 0 ? ((stats.totalSize / stats.maxSize) * 100).toFixed(1) : 0;
container.innerHTML = '<div class="cache-settings-content">' +
'<label class="checkbox-label">' +
'<input type="checkbox" id="global-cache-enabled" ' + (globalSettings.enabled ? 'checked' : '') + ' onchange="toggleGlobalCache()" /> ' +
t('apiSettings.enableGlobalCaching') +
'</label>' +
'<div class="cache-stats">' +
'<div class="stat-item">' +
'<span class="stat-label">' + t('apiSettings.cacheUsed') + '</span>' +
'<span class="stat-value">' + usedMB + ' MB / ' + maxMB + ' MB (' + usagePercent + '%)</span>' +
'</div>' +
'<div class="stat-item">' +
'<span class="stat-label">' + t('apiSettings.cacheEntries') + '</span>' +
'<span class="stat-value">' + stats.entries + '</span>' +
'</div>' +
'<div class="progress-bar">' +
'<div class="progress-fill" style="width: ' + usagePercent + '%"></div>' +
'</div>' +
'</div>' +
'<button class="btn btn-secondary" onclick="clearCache()">' +
'<i data-lucide="trash-2"></i> ' + t('apiSettings.clearCache') +
'</button>' +
'</div>';
if (window.lucide) lucide.createIcons();
}
// ========== Utility Functions ==========
/**
* Mask API key for display
*/
function maskApiKey(apiKey) {
if (!apiKey) return '';
if (apiKey.startsWith('${')) return apiKey; // Environment variable
if (apiKey.length <= 8) return '***';
return apiKey.substring(0, 4) + '...' + apiKey.substring(apiKey.length - 4);
}

View File

@@ -336,6 +336,10 @@
<span class="nav-text flex-1" data-i18n="nav.codexLensManager">CodexLens</span>
<span class="badge px-2 py-0.5 text-xs font-semibold rounded-full bg-hover text-muted-foreground" id="badgeCodexLens">-</span>
</li>
<li class="nav-item flex items-center gap-2 px-3 py-2.5 text-sm text-muted-foreground hover:bg-hover hover:text-foreground rounded cursor-pointer transition-colors" data-view="api-settings" data-tooltip="API Settings">
<i data-lucide="settings" class="nav-icon"></i>
<span class="nav-text flex-1" data-i18n="nav.apiSettings">API Settings</span>
</li>
<!-- Hidden: Code Graph Explorer (feature disabled)
<li class="nav-item flex items-center gap-2 px-3 py-2.5 text-sm text-muted-foreground hover:bg-hover hover:text-foreground rounded cursor-pointer transition-colors" data-view="graph-explorer" data-tooltip="Code Graph Explorer">
<i data-lucide="git-branch" class="nav-icon"></i>

View File

@@ -10,6 +10,10 @@ import { spawn, ChildProcess } from 'child_process';
import { existsSync, mkdirSync, readFileSync, writeFileSync, unlinkSync, readdirSync, statSync } from 'fs';
import { join, relative } from 'path';
// LiteLLM integration
import { executeLiteLLMEndpoint } from './litellm-executor.js';
import { findEndpointById } from '../config/litellm-api-config-manager.js';
// Native resume support
import {
trackNewSession,
@@ -592,6 +596,66 @@ async function executeCliTool(
const workingDir = cd || process.cwd();
ensureHistoryDir(workingDir); // Ensure history directory exists
// NEW: Check if model is a custom LiteLLM endpoint ID
if (model && !['gemini', 'qwen', 'codex'].includes(tool)) {
const endpoint = findEndpointById(workingDir, model);
if (endpoint) {
// Route to LiteLLM executor
if (onOutput) {
onOutput({ type: 'stderr', data: `[Routing to LiteLLM endpoint: ${model}]\n` });
}
const result = await executeLiteLLMEndpoint({
prompt,
endpointId: model,
baseDir: workingDir,
cwd: cd,
includeDirs: includeDirs ? includeDirs.split(',').map(d => d.trim()) : undefined,
enableCache: true,
onOutput: onOutput || undefined,
});
// Convert LiteLLM result to ExecutionOutput format
const startTime = Date.now();
const endTime = Date.now();
const duration = endTime - startTime;
const execution: ExecutionRecord = {
id: customId || `${Date.now()}-litellm`,
timestamp: new Date(startTime).toISOString(),
tool: 'litellm',
model: result.model,
mode,
prompt,
status: result.success ? 'success' : 'error',
exit_code: result.success ? 0 : 1,
duration_ms: duration,
output: {
stdout: result.output,
stderr: result.error || '',
truncated: false,
},
};
const conversation = convertToConversation(execution);
// Try to save to history
try {
saveConversation(workingDir, conversation);
} catch (err) {
console.error('[CLI Executor] Failed to save LiteLLM history:', (err as Error).message);
}
return {
success: result.success,
execution,
conversation,
stdout: result.output,
stderr: result.error || '',
};
}
}
// Get SQLite store for native session lookup
const store = await getSqliteStore(workingDir);

View File

@@ -0,0 +1,246 @@
/**
* LiteLLM Client - Bridge between CCW and ccw-litellm Python package
* Provides LLM chat and embedding capabilities via spawned Python process
*
* Features:
* - Chat completions with multiple models
* - Text embeddings generation
* - Configuration management
* - JSON protocol communication
*/
import { spawn } from 'child_process';
import { promisify } from 'util';
export interface LiteLLMConfig {
pythonPath?: string; // Default 'python'
configPath?: string; // Configuration file path
timeout?: number; // Default 60000ms
}
export interface ChatMessage {
role: 'system' | 'user' | 'assistant';
content: string;
}
export interface ChatResponse {
content: string;
model: string;
usage?: {
prompt_tokens: number;
completion_tokens: number;
total_tokens: number;
};
}
export interface EmbedResponse {
vectors: number[][];
dimensions: number;
model: string;
}
export interface LiteLLMStatus {
available: boolean;
version?: string;
error?: string;
}
export class LiteLLMClient {
private pythonPath: string;
private configPath?: string;
private timeout: number;
constructor(config: LiteLLMConfig = {}) {
this.pythonPath = config.pythonPath || 'python';
this.configPath = config.configPath;
this.timeout = config.timeout || 60000;
}
/**
* Execute Python ccw-litellm command
*/
private async executePython(args: string[], options: { timeout?: number } = {}): Promise<string> {
const timeout = options.timeout || this.timeout;
return new Promise((resolve, reject) => {
const proc = spawn(this.pythonPath, ['-m', 'ccw_litellm.cli', ...args], {
stdio: ['pipe', 'pipe', 'pipe'],
env: { ...process.env }
});
let stdout = '';
let stderr = '';
let timedOut = false;
// Set up timeout
const timeoutId = setTimeout(() => {
timedOut = true;
proc.kill('SIGTERM');
reject(new Error(`Command timed out after ${timeout}ms`));
}, timeout);
proc.stdout.on('data', (data) => {
stdout += data.toString();
});
proc.stderr.on('data', (data) => {
stderr += data.toString();
});
proc.on('error', (error) => {
clearTimeout(timeoutId);
reject(new Error(`Failed to spawn Python process: ${error.message}`));
});
proc.on('close', (code) => {
clearTimeout(timeoutId);
if (timedOut) {
return; // Already rejected
}
if (code === 0) {
resolve(stdout.trim());
} else {
const errorMsg = stderr.trim() || `Process exited with code ${code}`;
reject(new Error(errorMsg));
}
});
});
}
/**
* Check if ccw-litellm is available
*/
async isAvailable(): Promise<boolean> {
try {
await this.executePython(['version'], { timeout: 5000 });
return true;
} catch {
return false;
}
}
/**
* Get status information
*/
async getStatus(): Promise<LiteLLMStatus> {
try {
const output = await this.executePython(['version'], { timeout: 5000 });
return {
available: true,
version: output.trim()
};
} catch (error: any) {
return {
available: false,
error: error.message
};
}
}
/**
* Get current configuration
*/
async getConfig(): Promise<any> {
const output = await this.executePython(['config', '--json']);
return JSON.parse(output);
}
/**
* Generate embeddings for texts
*/
async embed(texts: string[], model: string = 'default'): Promise<EmbedResponse> {
if (!texts || texts.length === 0) {
throw new Error('texts array cannot be empty');
}
const args = ['embed', '--model', model, '--output', 'json'];
// Add texts as arguments
for (const text of texts) {
args.push(text);
}
const output = await this.executePython(args, { timeout: this.timeout * 2 });
const vectors = JSON.parse(output);
return {
vectors,
dimensions: vectors[0]?.length || 0,
model
};
}
/**
* Chat with LLM
*/
async chat(message: string, model: string = 'default'): Promise<string> {
if (!message) {
throw new Error('message cannot be empty');
}
const args = ['chat', '--model', model, message];
return this.executePython(args, { timeout: this.timeout * 2 });
}
/**
* Multi-turn chat with messages array
*/
async chatMessages(messages: ChatMessage[], model: string = 'default'): Promise<ChatResponse> {
if (!messages || messages.length === 0) {
throw new Error('messages array cannot be empty');
}
// For now, just use the last user message
// TODO: Implement full message history support in ccw-litellm
const lastMessage = messages[messages.length - 1];
const content = await this.chat(lastMessage.content, model);
return {
content,
model,
usage: undefined // TODO: Add usage tracking
};
}
}
// Singleton instance
let _client: LiteLLMClient | null = null;
/**
* Get or create singleton LiteLLM client
*/
export function getLiteLLMClient(config?: LiteLLMConfig): LiteLLMClient {
if (!_client) {
_client = new LiteLLMClient(config);
}
return _client;
}
/**
* Check if LiteLLM is available
*/
export async function checkLiteLLMAvailable(): Promise<boolean> {
try {
const client = getLiteLLMClient();
return await client.isAvailable();
} catch {
return false;
}
}
/**
* Get LiteLLM status
*/
export async function getLiteLLMStatus(): Promise<LiteLLMStatus> {
try {
const client = getLiteLLMClient();
return await client.getStatus();
} catch (error: any) {
return {
available: false,
error: error.message
};
}
}

View File

@@ -0,0 +1,241 @@
/**
* LiteLLM Executor - Execute LiteLLM endpoints with context caching
* Integrates with context-cache for file packing and LiteLLM client for API calls
*/
import { getLiteLLMClient } from './litellm-client.js';
import { handler as contextCacheHandler } from './context-cache.js';
import {
findEndpointById,
getProviderWithResolvedEnvVars,
} from '../config/litellm-api-config-manager.js';
import type { CustomEndpoint, ProviderCredential } from '../types/litellm-api-config.js';
export interface LiteLLMExecutionOptions {
prompt: string;
endpointId: string; // Custom endpoint ID (e.g., "my-gpt4o")
baseDir: string; // Project base directory
cwd?: string; // Working directory for file resolution
includeDirs?: string[]; // Additional directories for @patterns
enableCache?: boolean; // Override endpoint cache setting
onOutput?: (data: { type: string; data: string }) => void;
}
export interface LiteLLMExecutionResult {
success: boolean;
output: string;
model: string;
provider: string;
cacheUsed: boolean;
cachedFiles?: string[];
error?: string;
}
/**
* Extract @patterns from prompt text
*/
export function extractPatterns(prompt: string): string[] {
// Match @path patterns: @src/**/*.ts, @CLAUDE.md, @../shared/**/*
const regex = /@([^\s]+)/g;
const patterns: string[] = [];
let match;
while ((match = regex.exec(prompt)) !== null) {
patterns.push('@' + match[1]);
}
return patterns;
}
/**
* Execute LiteLLM endpoint with optional context caching
*/
export async function executeLiteLLMEndpoint(
options: LiteLLMExecutionOptions
): Promise<LiteLLMExecutionResult> {
const { prompt, endpointId, baseDir, cwd, includeDirs, enableCache, onOutput } = options;
// 1. Find endpoint configuration
const endpoint = findEndpointById(baseDir, endpointId);
if (!endpoint) {
return {
success: false,
output: '',
model: '',
provider: '',
cacheUsed: false,
error: `Endpoint not found: ${endpointId}`,
};
}
// 2. Get provider with resolved env vars
const provider = getProviderWithResolvedEnvVars(baseDir, endpoint.providerId);
if (!provider) {
return {
success: false,
output: '',
model: '',
provider: '',
cacheUsed: false,
error: `Provider not found: ${endpoint.providerId}`,
};
}
// Verify API key is available
if (!provider.resolvedApiKey) {
return {
success: false,
output: '',
model: endpoint.model,
provider: provider.type,
cacheUsed: false,
error: `API key not configured for provider: ${provider.name}`,
};
}
// 3. Process context cache if enabled
let finalPrompt = prompt;
let cacheUsed = false;
let cachedFiles: string[] = [];
const shouldCache = enableCache ?? endpoint.cacheStrategy.enabled;
if (shouldCache) {
const patterns = extractPatterns(prompt);
if (patterns.length > 0) {
if (onOutput) {
onOutput({ type: 'stderr', data: `[Context cache: Found ${patterns.length} @patterns]\n` });
}
// Pack files into cache
const packResult = await contextCacheHandler({
operation: 'pack',
patterns,
cwd: cwd || process.cwd(),
include_dirs: includeDirs,
ttl: endpoint.cacheStrategy.ttlMinutes * 60 * 1000,
max_file_size: endpoint.cacheStrategy.maxSizeKB * 1024,
});
if (packResult.success && packResult.result) {
const pack = packResult.result as any;
if (onOutput) {
onOutput({
type: 'stderr',
data: `[Context cache: Packed ${pack.files_packed} files, ${pack.total_bytes} bytes]\n`,
});
}
// Read cached content
const readResult = await contextCacheHandler({
operation: 'read',
session_id: pack.session_id,
limit: endpoint.cacheStrategy.maxSizeKB * 1024,
});
if (readResult.success && readResult.result) {
const read = readResult.result as any;
// Prepend cached content to prompt
finalPrompt = `${read.content}\n\n---\n\n${prompt}`;
cacheUsed = true;
cachedFiles = pack.files_packed ? Array(pack.files_packed).fill('...') : [];
if (onOutput) {
onOutput({ type: 'stderr', data: `[Context cache: Applied to prompt]\n` });
}
}
} else if (packResult.error) {
if (onOutput) {
onOutput({ type: 'stderr', data: `[Context cache warning: ${packResult.error}]\n` });
}
}
}
}
// 4. Call LiteLLM
try {
if (onOutput) {
onOutput({
type: 'stderr',
data: `[LiteLLM: Calling ${provider.type}/${endpoint.model}]\n`,
});
}
const client = getLiteLLMClient({
pythonPath: 'python',
timeout: 120000, // 2 minutes
});
// Configure provider credentials via environment
// LiteLLM uses standard env vars like OPENAI_API_KEY, ANTHROPIC_API_KEY
const envVarName = getProviderEnvVarName(provider.type);
if (envVarName) {
process.env[envVarName] = provider.resolvedApiKey;
}
// Set base URL if custom
if (provider.apiBase) {
const baseUrlEnvVar = getProviderBaseUrlEnvVarName(provider.type);
if (baseUrlEnvVar) {
process.env[baseUrlEnvVar] = provider.apiBase;
}
}
// Use litellm-client to call chat
const response = await client.chat(finalPrompt, endpoint.model);
if (onOutput) {
onOutput({ type: 'stdout', data: response });
}
return {
success: true,
output: response,
model: endpoint.model,
provider: provider.type,
cacheUsed,
cachedFiles,
};
} catch (error) {
const errorMsg = (error as Error).message;
if (onOutput) {
onOutput({ type: 'stderr', data: `[LiteLLM error: ${errorMsg}]\n` });
}
return {
success: false,
output: '',
model: endpoint.model,
provider: provider.type,
cacheUsed,
error: errorMsg,
};
}
}
/**
* Get environment variable name for provider API key
*/
function getProviderEnvVarName(providerType: string): string | null {
const envVarMap: Record<string, string> = {
openai: 'OPENAI_API_KEY',
anthropic: 'ANTHROPIC_API_KEY',
google: 'GOOGLE_API_KEY',
azure: 'AZURE_API_KEY',
mistral: 'MISTRAL_API_KEY',
deepseek: 'DEEPSEEK_API_KEY',
};
return envVarMap[providerType] || null;
}
/**
* Get environment variable name for provider base URL
*/
function getProviderBaseUrlEnvVarName(providerType: string): string | null {
const envVarMap: Record<string, string> = {
openai: 'OPENAI_API_BASE',
anthropic: 'ANTHROPIC_API_BASE',
azure: 'AZURE_API_BASE',
};
return envVarMap[providerType] || null;
}

View File

@@ -0,0 +1,136 @@
/**
* LiteLLM API Configuration Type Definitions
*
* Defines types for provider credentials, cache strategies, custom endpoints,
* and the overall configuration structure for LiteLLM API integration.
*/
/**
* Supported LLM provider types
*/
export type ProviderType =
| 'openai'
| 'anthropic'
| 'ollama'
| 'azure'
| 'google'
| 'mistral'
| 'deepseek'
| 'custom';
/**
* Provider credential configuration
* Stores API keys, base URLs, and provider metadata
*/
export interface ProviderCredential {
/** Unique identifier for this provider configuration */
id: string;
/** Display name for UI */
name: string;
/** Provider type */
type: ProviderType;
/** API key or environment variable reference (e.g., ${OPENAI_API_KEY}) */
apiKey: string;
/** Custom API base URL (optional, overrides provider default) */
apiBase?: string;
/** Whether this provider is enabled */
enabled: boolean;
/** Creation timestamp (ISO 8601) */
createdAt: string;
/** Last update timestamp (ISO 8601) */
updatedAt: string;
}
/**
* Cache strategy for prompt context optimization
* Enables file-based caching to reduce token usage
*/
export interface CacheStrategy {
/** Whether caching is enabled for this endpoint */
enabled: boolean;
/** Time-to-live in minutes (default: 60) */
ttlMinutes: number;
/** Maximum cache size in KB (default: 512) */
maxSizeKB: number;
/** File patterns to cache (glob patterns like "*.md", "*.ts") */
filePatterns: string[];
}
/**
* Custom endpoint configuration
* Maps CLI identifiers to specific models and caching strategies
*/
export interface CustomEndpoint {
/** Unique CLI identifier (used in --model flag, e.g., "my-gpt4o") */
id: string;
/** Display name for UI */
name: string;
/** Reference to provider credential ID */
providerId: string;
/** Model identifier (e.g., "gpt-4o", "claude-3-5-sonnet-20241022") */
model: string;
/** Optional description */
description?: string;
/** Cache strategy for this endpoint */
cacheStrategy: CacheStrategy;
/** Whether this endpoint is enabled */
enabled: boolean;
/** Creation timestamp (ISO 8601) */
createdAt: string;
/** Last update timestamp (ISO 8601) */
updatedAt: string;
}
/**
* Global cache settings
* Applies to all endpoints unless overridden
*/
export interface GlobalCacheSettings {
/** Whether caching is globally enabled */
enabled: boolean;
/** Cache directory path (default: ~/.ccw/cache/context) */
cacheDir: string;
/** Maximum total cache size in MB (default: 100) */
maxTotalSizeMB: number;
}
/**
* Complete LiteLLM API configuration
* Root configuration object stored in JSON file
*/
export interface LiteLLMApiConfig {
/** Configuration schema version */
version: number;
/** List of configured providers */
providers: ProviderCredential[];
/** List of custom endpoints */
endpoints: CustomEndpoint[];
/** Default endpoint ID (optional) */
defaultEndpoint?: string;
/** Global cache settings */
globalCacheSettings: GlobalCacheSettings;
}

View File

@@ -0,0 +1,96 @@
/**
* LiteLLM Client Tests
* Tests for the LiteLLM TypeScript bridge
*/
import { describe, it, expect, beforeEach } from '@jest/globals';
import { LiteLLMClient, getLiteLLMClient, checkLiteLLMAvailable, getLiteLLMStatus } from '../src/tools/litellm-client';
describe('LiteLLMClient', () => {
let client: LiteLLMClient;
beforeEach(() => {
client = new LiteLLMClient({ timeout: 5000 });
});
describe('Constructor', () => {
it('should create client with default config', () => {
const defaultClient = new LiteLLMClient();
expect(defaultClient).toBeDefined();
});
it('should create client with custom config', () => {
const customClient = new LiteLLMClient({
pythonPath: 'python3',
timeout: 10000
});
expect(customClient).toBeDefined();
});
});
describe('isAvailable', () => {
it('should check if ccw-litellm is available', async () => {
const available = await client.isAvailable();
expect(typeof available).toBe('boolean');
});
});
describe('getStatus', () => {
it('should return status object', async () => {
const status = await client.getStatus();
expect(status).toHaveProperty('available');
expect(typeof status.available).toBe('boolean');
});
});
describe('embed', () => {
it('should throw error for empty texts array', async () => {
await expect(client.embed([])).rejects.toThrow('texts array cannot be empty');
});
it('should throw error for null texts', async () => {
await expect(client.embed(null as any)).rejects.toThrow();
});
});
describe('chat', () => {
it('should throw error for empty message', async () => {
await expect(client.chat('')).rejects.toThrow('message cannot be empty');
});
});
describe('chatMessages', () => {
it('should throw error for empty messages array', async () => {
await expect(client.chatMessages([])).rejects.toThrow('messages array cannot be empty');
});
it('should throw error for null messages', async () => {
await expect(client.chatMessages(null as any)).rejects.toThrow();
});
});
});
describe('Singleton Functions', () => {
describe('getLiteLLMClient', () => {
it('should return singleton instance', () => {
const client1 = getLiteLLMClient();
const client2 = getLiteLLMClient();
expect(client1).toBe(client2);
});
});
describe('checkLiteLLMAvailable', () => {
it('should return boolean', async () => {
const available = await checkLiteLLMAvailable();
expect(typeof available).toBe('boolean');
});
});
describe('getLiteLLMStatus', () => {
it('should return status object', async () => {
const status = await getLiteLLMStatus();
expect(status).toHaveProperty('available');
expect(typeof status.available).toBe('boolean');
});
});
});

View File

@@ -106,7 +106,8 @@ def init(
workers: Optional[int] = typer.Option(None, "--workers", "-w", min=1, max=16, help="Parallel worker processes (default: auto-detect based on CPU count, max 16)."),
force: bool = typer.Option(False, "--force", "-f", help="Force full reindex (skip incremental mode)."),
no_embeddings: bool = typer.Option(False, "--no-embeddings", help="Skip automatic embedding generation (if semantic deps installed)."),
embedding_model: str = typer.Option("code", "--embedding-model", help="Embedding model profile: fast, code, multilingual, balanced."),
embedding_backend: str = typer.Option("fastembed", "--embedding-backend", help="Embedding backend: fastembed (local) or litellm (remote API)."),
embedding_model: str = typer.Option("code", "--embedding-model", help="Embedding model: profile name for fastembed (fast/code/multilingual/balanced) or model name for litellm (e.g. text-embedding-3-small)."),
json_mode: bool = typer.Option(False, "--json", help="Output JSON response."),
verbose: bool = typer.Option(False, "--verbose", "-v", help="Enable debug logging."),
) -> None:
@@ -120,6 +121,14 @@ def init(
If semantic search dependencies are installed, automatically generates embeddings
after indexing completes. Use --no-embeddings to skip this step.
Embedding Backend Options:
- fastembed: Local ONNX-based embeddings (default, no API calls)
- litellm: Remote API embeddings via ccw-litellm (requires API keys)
Embedding Model Options:
- For fastembed backend: Use profile names (fast, code, multilingual, balanced)
- For litellm backend: Use model names (e.g., text-embedding-3-small, text-embedding-ada-002)
"""
_configure_logging(verbose, json_mode)
config = Config()
@@ -171,11 +180,22 @@ def init(
from codexlens.cli.embedding_manager import generate_embeddings_recursive, get_embeddings_status
if SEMANTIC_AVAILABLE:
# Validate embedding backend
valid_backends = ["fastembed", "litellm"]
if embedding_backend not in valid_backends:
error_msg = f"Invalid embedding backend: {embedding_backend}. Must be one of: {', '.join(valid_backends)}"
if json_mode:
print_json(success=False, error=error_msg)
else:
console.print(f"[red]Error:[/red] {error_msg}")
raise typer.Exit(code=1)
# Use the index root directory (not the _index.db file)
index_root = Path(build_result.index_root)
if not json_mode:
console.print("\n[bold]Generating embeddings...[/bold]")
console.print(f"Backend: [cyan]{embedding_backend}[/cyan]")
console.print(f"Model: [cyan]{embedding_model}[/cyan]")
else:
# Output progress message for JSON mode (parsed by Node.js)
@@ -196,6 +216,7 @@ def init(
embed_result = generate_embeddings_recursive(
index_root,
embedding_backend=embedding_backend,
model_profile=embedding_model,
force=False, # Don't force regenerate during init
chunk_size=2000,
@@ -1781,11 +1802,17 @@ def embeddings_generate(
exists=True,
help="Path to _index.db file or project directory.",
),
backend: str = typer.Option(
"fastembed",
"--backend",
"-b",
help="Embedding backend: fastembed (local) or litellm (remote API).",
),
model: str = typer.Option(
"code",
"--model",
"-m",
help="Model profile: fast, code, multilingual, balanced.",
help="Model: profile name for fastembed (fast/code/multilingual/balanced) or model name for litellm (e.g. text-embedding-3-small).",
),
force: bool = typer.Option(
False,
@@ -1813,21 +1840,43 @@ def embeddings_generate(
semantic search capabilities. Embeddings are stored in the same
database as the FTS index.
Model Profiles:
- fast: BAAI/bge-small-en-v1.5 (384 dims, ~80MB)
- code: jinaai/jina-embeddings-v2-base-code (768 dims, ~150MB) [recommended]
- multilingual: intfloat/multilingual-e5-large (1024 dims, ~1GB)
- balanced: mixedbread-ai/mxbai-embed-large-v1 (1024 dims, ~600MB)
Embedding Backend Options:
- fastembed: Local ONNX-based embeddings (default, no API calls)
- litellm: Remote API embeddings via ccw-litellm (requires API keys)
Model Options:
For fastembed backend (profiles):
- fast: BAAI/bge-small-en-v1.5 (384 dims, ~80MB)
- code: jinaai/jina-embeddings-v2-base-code (768 dims, ~150MB) [recommended]
- multilingual: intfloat/multilingual-e5-large (1024 dims, ~1GB)
- balanced: mixedbread-ai/mxbai-embed-large-v1 (1024 dims, ~600MB)
For litellm backend (model names):
- text-embedding-3-small, text-embedding-3-large (OpenAI)
- text-embedding-ada-002 (OpenAI legacy)
- Any model supported by ccw-litellm
Examples:
codexlens embeddings-generate ~/projects/my-app # Auto-find index for project
codexlens embeddings-generate ~/projects/my-app # Auto-find index (fastembed, code profile)
codexlens embeddings-generate ~/.codexlens/indexes/project/_index.db # Specific index
codexlens embeddings-generate ~/projects/my-app --model fast --force # Regenerate with fast model
codexlens embeddings-generate ~/projects/my-app --backend litellm --model text-embedding-3-small # Use LiteLLM
codexlens embeddings-generate ~/projects/my-app --model fast --force # Regenerate with fast profile
"""
_configure_logging(verbose, json_mode)
from codexlens.cli.embedding_manager import generate_embeddings, generate_embeddings_recursive
# Validate backend
valid_backends = ["fastembed", "litellm"]
if backend not in valid_backends:
error_msg = f"Invalid backend: {backend}. Must be one of: {', '.join(valid_backends)}"
if json_mode:
print_json(success=False, error=error_msg)
else:
console.print(f"[red]Error:[/red] {error_msg}")
console.print(f"[dim]Valid backends: {', '.join(valid_backends)}[/dim]")
raise typer.Exit(code=1)
# Resolve path
target_path = path.expanduser().resolve()
@@ -1877,11 +1926,13 @@ def embeddings_generate(
console.print(f"Mode: [yellow]Recursive[/yellow]")
else:
console.print(f"Index: [dim]{index_path}[/dim]")
console.print(f"Backend: [cyan]{backend}[/cyan]")
console.print(f"Model: [cyan]{model}[/cyan]\n")
if use_recursive:
result = generate_embeddings_recursive(
index_root,
embedding_backend=backend,
model_profile=model,
force=force,
chunk_size=chunk_size,
@@ -1890,6 +1941,7 @@ def embeddings_generate(
else:
result = generate_embeddings(
index_path,
embedding_backend=backend,
model_profile=model,
force=force,
chunk_size=chunk_size,

View File

@@ -191,6 +191,7 @@ def check_index_embeddings(index_path: Path) -> Dict[str, any]:
def generate_embeddings(
index_path: Path,
embedding_backend: str = "fastembed",
model_profile: str = "code",
force: bool = False,
chunk_size: int = 2000,
@@ -203,7 +204,9 @@ def generate_embeddings(
Args:
index_path: Path to _index.db file
model_profile: Model profile (fast, code, multilingual, balanced)
embedding_backend: Embedding backend to use (fastembed or litellm)
model_profile: Model profile for fastembed (fast, code, multilingual, balanced)
or model name for litellm (e.g., text-embedding-3-small)
force: If True, regenerate even if embeddings exist
chunk_size: Maximum chunk size in characters
progress_callback: Optional callback for progress updates
@@ -253,8 +256,22 @@ def generate_embeddings(
# Initialize components
try:
# Initialize embedder (singleton, reused throughout the function)
embedder = get_embedder(profile=model_profile)
# Import factory function to support both backends
from codexlens.semantic.factory import get_embedder as get_embedder_factory
# Initialize embedder using factory (supports both fastembed and litellm)
# For fastembed: model_profile is a profile name (fast/code/multilingual/balanced)
# For litellm: model_profile is a model name (e.g., text-embedding-3-small)
if embedding_backend == "fastembed":
embedder = get_embedder_factory(backend="fastembed", profile=model_profile, use_gpu=True)
elif embedding_backend == "litellm":
embedder = get_embedder_factory(backend="litellm", model=model_profile)
else:
return {
"success": False,
"error": f"Invalid embedding backend: {embedding_backend}. Must be 'fastembed' or 'litellm'.",
}
# skip_token_count=True: Use fast estimation (len/4) instead of expensive tiktoken
# This significantly reduces CPU usage with minimal impact on metadata accuracy
chunker = Chunker(config=ChunkConfig(max_chunk_size=chunk_size, skip_token_count=True))
@@ -428,6 +445,7 @@ def find_all_indexes(scan_dir: Path) -> List[Path]:
def generate_embeddings_recursive(
index_root: Path,
embedding_backend: str = "fastembed",
model_profile: str = "code",
force: bool = False,
chunk_size: int = 2000,
@@ -437,7 +455,9 @@ def generate_embeddings_recursive(
Args:
index_root: Root index directory containing _index.db files
model_profile: Model profile (fast, code, multilingual, balanced)
embedding_backend: Embedding backend to use (fastembed or litellm)
model_profile: Model profile for fastembed (fast, code, multilingual, balanced)
or model name for litellm (e.g., text-embedding-3-small)
force: If True, regenerate even if embeddings exist
chunk_size: Maximum chunk size in characters
progress_callback: Optional callback for progress updates
@@ -474,6 +494,7 @@ def generate_embeddings_recursive(
result = generate_embeddings(
index_path,
embedding_backend=embedding_backend,
model_profile=model_profile,
force=force,
chunk_size=chunk_size,

View File

@@ -67,10 +67,29 @@ def check_gpu_available() -> tuple[bool, str]:
return False, "GPU support module not available"
# Export embedder components
# BaseEmbedder is always available (abstract base class)
from .base import BaseEmbedder
# Factory function for creating embedders
from .factory import get_embedder as get_embedder_factory
# Optional: LiteLLMEmbedderWrapper (only if ccw-litellm is installed)
try:
from .litellm_embedder import LiteLLMEmbedderWrapper
_LITELLM_AVAILABLE = True
except ImportError:
LiteLLMEmbedderWrapper = None
_LITELLM_AVAILABLE = False
__all__ = [
"SEMANTIC_AVAILABLE",
"SEMANTIC_BACKEND",
"GPU_AVAILABLE",
"check_semantic_available",
"check_gpu_available",
"BaseEmbedder",
"get_embedder_factory",
"LiteLLMEmbedderWrapper",
]

View File

@@ -0,0 +1,51 @@
"""Base class for embedders.
Defines the interface that all embedders must implement.
"""
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Iterable
import numpy as np
class BaseEmbedder(ABC):
"""Base class for all embedders.
All embedder implementations must inherit from this class and implement
the abstract methods to ensure a consistent interface.
"""
@property
@abstractmethod
def embedding_dim(self) -> int:
"""Return embedding dimensions.
Returns:
int: Dimension of the embedding vectors.
"""
...
@property
@abstractmethod
def model_name(self) -> str:
"""Return model name.
Returns:
str: Name or identifier of the underlying model.
"""
...
@abstractmethod
def embed_to_numpy(self, texts: str | Iterable[str]) -> np.ndarray:
"""Embed texts to numpy array.
Args:
texts: Single text or iterable of texts to embed.
Returns:
numpy.ndarray: Array of shape (n_texts, embedding_dim) containing embeddings.
"""
...

View File

@@ -14,6 +14,7 @@ from typing import Dict, Iterable, List, Optional
import numpy as np
from . import SEMANTIC_AVAILABLE
from .base import BaseEmbedder
from .gpu_support import get_optimal_providers, is_gpu_available, get_gpu_summary, get_selected_device_id
logger = logging.getLogger(__name__)
@@ -84,7 +85,7 @@ def clear_embedder_cache() -> None:
gc.collect()
class Embedder:
class Embedder(BaseEmbedder):
"""Generate embeddings for code chunks using fastembed (ONNX-based).
Supported Model Profiles:
@@ -138,11 +139,11 @@ class Embedder:
# Resolve model name from profile or use explicit name
if model_name:
self.model_name = model_name
self._model_name = model_name
elif profile and profile in self.MODELS:
self.model_name = self.MODELS[profile]
self._model_name = self.MODELS[profile]
else:
self.model_name = self.DEFAULT_MODEL
self._model_name = self.DEFAULT_MODEL
# Configure ONNX execution providers with device_id options for GPU selection
# Using with_device_options=True ensures DirectML/CUDA device_id is passed correctly
@@ -154,10 +155,15 @@ class Embedder:
self._use_gpu = use_gpu
self._model = None
@property
def model_name(self) -> str:
"""Get model name."""
return self._model_name
@property
def embedding_dim(self) -> int:
"""Get embedding dimension for current model."""
return self.MODEL_DIMS.get(self.model_name, 768) # Default to 768 if unknown
return self.MODEL_DIMS.get(self._model_name, 768) # Default to 768 if unknown
@property
def providers(self) -> List[str]:

View File

@@ -0,0 +1,61 @@
"""Factory for creating embedders.
Provides a unified interface for instantiating different embedder backends.
"""
from __future__ import annotations
from typing import Any
from .base import BaseEmbedder
def get_embedder(
backend: str = "fastembed",
profile: str = "code",
model: str = "default",
use_gpu: bool = True,
**kwargs: Any,
) -> BaseEmbedder:
"""Factory function to create embedder based on backend.
Args:
backend: Embedder backend to use. Options:
- "fastembed": Use fastembed (ONNX-based) embedder (default)
- "litellm": Use ccw-litellm embedder
profile: Model profile for fastembed backend ("fast", "code", "multilingual", "balanced")
Used only when backend="fastembed". Default: "code"
model: Model identifier for litellm backend.
Used only when backend="litellm". Default: "default"
use_gpu: Whether to use GPU acceleration when available (default: True).
Used only when backend="fastembed".
**kwargs: Additional backend-specific arguments
Returns:
BaseEmbedder: Configured embedder instance
Raises:
ValueError: If backend is not recognized
ImportError: If required backend dependencies are not installed
Examples:
Create fastembed embedder with code profile:
>>> embedder = get_embedder(backend="fastembed", profile="code")
Create fastembed embedder with fast profile and CPU only:
>>> embedder = get_embedder(backend="fastembed", profile="fast", use_gpu=False)
Create litellm embedder:
>>> embedder = get_embedder(backend="litellm", model="text-embedding-3-small")
"""
if backend == "fastembed":
from .embedder import Embedder
return Embedder(profile=profile, use_gpu=use_gpu, **kwargs)
elif backend == "litellm":
from .litellm_embedder import LiteLLMEmbedderWrapper
return LiteLLMEmbedderWrapper(model=model, **kwargs)
else:
raise ValueError(
f"Unknown backend: {backend}. "
f"Supported backends: 'fastembed', 'litellm'"
)

View File

@@ -0,0 +1,79 @@
"""LiteLLM embedder wrapper for CodexLens.
Provides integration with ccw-litellm's LiteLLMEmbedder for embedding generation.
"""
from __future__ import annotations
from typing import Iterable
import numpy as np
from .base import BaseEmbedder
class LiteLLMEmbedderWrapper(BaseEmbedder):
"""Wrapper for ccw-litellm LiteLLMEmbedder.
This wrapper adapts the ccw-litellm LiteLLMEmbedder to the CodexLens
BaseEmbedder interface, enabling seamless integration with CodexLens
semantic search functionality.
Args:
model: Model identifier for LiteLLM (default: "default")
**kwargs: Additional arguments passed to LiteLLMEmbedder
Raises:
ImportError: If ccw-litellm package is not installed
"""
def __init__(self, model: str = "default", **kwargs) -> None:
"""Initialize LiteLLM embedder wrapper.
Args:
model: Model identifier for LiteLLM (default: "default")
**kwargs: Additional arguments passed to LiteLLMEmbedder
Raises:
ImportError: If ccw-litellm package is not installed
"""
try:
from ccw_litellm import LiteLLMEmbedder
self._embedder = LiteLLMEmbedder(model=model, **kwargs)
except ImportError as e:
raise ImportError(
"ccw-litellm not installed. Install with: pip install ccw-litellm"
) from e
@property
def embedding_dim(self) -> int:
"""Return embedding dimensions from LiteLLMEmbedder.
Returns:
int: Dimension of the embedding vectors.
"""
return self._embedder.dimensions
@property
def model_name(self) -> str:
"""Return model name from LiteLLMEmbedder.
Returns:
str: Name or identifier of the underlying model.
"""
return self._embedder.model_name
def embed_to_numpy(self, texts: str | Iterable[str]) -> np.ndarray:
"""Embed texts to numpy array using LiteLLMEmbedder.
Args:
texts: Single text or iterable of texts to embed.
Returns:
numpy.ndarray: Array of shape (n_texts, embedding_dim) containing embeddings.
"""
if isinstance(texts, str):
texts = [texts]
else:
texts = list(texts)
return self._embedder.embed(texts)