feat: Add unified LiteLLM API management with dashboard UI and CLI integration

- Create ccw-litellm Python package with AbstractEmbedder and AbstractLLMClient interfaces
- Add BaseEmbedder abstraction and factory pattern to codex-lens for pluggable backends
- Implement API Settings dashboard page for provider credentials and custom endpoints
- Add REST API routes for CRUD operations on providers and endpoints
- Extend CLI with --model parameter for custom endpoint routing
- Integrate existing context-cache for @pattern file resolution
- Add provider model registry with predefined models per provider type
- Include i18n translations (en/zh) for all new UI elements

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
catlog22
2025-12-23 20:36:32 +08:00
parent 5228581324
commit bf66b095c7
44 changed files with 4948 additions and 19 deletions

View File

@@ -0,0 +1,14 @@
"""Abstract interfaces for ccw-litellm."""
from __future__ import annotations
from .embedder import AbstractEmbedder
from .llm import AbstractLLMClient, ChatMessage, LLMResponse
__all__ = [
"AbstractEmbedder",
"AbstractLLMClient",
"ChatMessage",
"LLMResponse",
]

View File

@@ -0,0 +1,52 @@
from __future__ import annotations
import asyncio
from abc import ABC, abstractmethod
from typing import Any, Sequence
import numpy as np
from numpy.typing import NDArray
class AbstractEmbedder(ABC):
"""Embedding interface compatible with fastembed-style embedders.
Implementers only need to provide the synchronous `embed` method; an
asynchronous `aembed` wrapper is provided for convenience.
"""
@property
@abstractmethod
def dimensions(self) -> int:
"""Embedding vector size."""
@abstractmethod
def embed(
self,
texts: str | Sequence[str],
*,
batch_size: int | None = None,
**kwargs: Any,
) -> NDArray[np.floating]:
"""Embed one or more texts.
Returns:
A numpy array of shape (n_texts, dimensions).
"""
async def aembed(
self,
texts: str | Sequence[str],
*,
batch_size: int | None = None,
**kwargs: Any,
) -> NDArray[np.floating]:
"""Async wrapper around `embed` using a worker thread by default."""
return await asyncio.to_thread(
self.embed,
texts,
batch_size=batch_size,
**kwargs,
)

View File

@@ -0,0 +1,45 @@
from __future__ import annotations
import asyncio
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Literal, Sequence
@dataclass(frozen=True, slots=True)
class ChatMessage:
role: Literal["system", "user", "assistant", "tool"]
content: str
@dataclass(frozen=True, slots=True)
class LLMResponse:
content: str
raw: Any | None = None
class AbstractLLMClient(ABC):
"""LiteLLM-like client interface.
Implementers only need to provide synchronous methods; async wrappers are
provided via `asyncio.to_thread`.
"""
@abstractmethod
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> LLMResponse:
"""Chat completion for a sequence of messages."""
@abstractmethod
def complete(self, prompt: str, **kwargs: Any) -> LLMResponse:
"""Text completion for a prompt."""
async def achat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> LLMResponse:
"""Async wrapper around `chat` using a worker thread by default."""
return await asyncio.to_thread(self.chat, messages, **kwargs)
async def acomplete(self, prompt: str, **kwargs: Any) -> LLMResponse:
"""Async wrapper around `complete` using a worker thread by default."""
return await asyncio.to_thread(self.complete, prompt, **kwargs)