feat: Add pycli bash wrapper with hierarchical vector database support

- Create unified bash wrapper (pycli) for Python CLI tools
- Implement hierarchical vector database with smart parent discovery
- Add comprehensive installation script with auto-configuration
- Remove redundant analyzer.py and api_indexer.py files
- Enhance Python scripts with environment variable support
- Update documentation to focus on pycli unified interface

Key Features:
- Automatic parent directory vector DB discovery
- No redundant vectorization in subdirectories
- Central vector database storage in ~/.claude/vector_db
- Configurable Python interpreter paths
- One-command installation and setup

🤖 Generated with Claude Code

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
catlog22
2025-09-23 22:09:55 +08:00
parent 194d2722a3
commit c337204242
9 changed files with 1353 additions and 726 deletions

View File

@@ -1,305 +0,0 @@
#!/usr/bin/env python3
"""
Unified Path-Aware Analyzer
Main entry point for the refactored analyzer system.
Provides a clean, simple API for intelligent file analysis.
"""
import os
import sys
import argparse
import logging
import json
import time
from pathlib import Path
from typing import Dict, List, Optional, Any
# Add current directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
from core.config import get_config
from core.file_indexer import FileIndexer, IndexStats
from core.context_analyzer import ContextAnalyzer, AnalysisResult
from core.path_matcher import PathMatcher, PathMatchingResult
from core.embedding_manager import EmbeddingManager
from utils.colors import Colors
class Analyzer:
"""Main analyzer class with simplified API."""
def __init__(self, config_path: Optional[str] = None, root_path: str = "."):
self.root_path = Path(root_path).resolve()
self.config = get_config(config_path)
# Setup logging
logging.basicConfig(
level=getattr(logging, self.config.get('logging.level', 'INFO')),
format=self.config.get('logging.format', '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
)
self.logger = logging.getLogger(__name__)
# Initialize core components
self.indexer = FileIndexer(self.config, str(self.root_path))
self.context_analyzer = ContextAnalyzer(self.config)
self.path_matcher = PathMatcher(self.config)
# Initialize embedding manager if enabled
self.embedding_manager = None
if self.config.is_embedding_enabled():
try:
self.embedding_manager = EmbeddingManager(self.config)
except ImportError:
self.logger.warning("Embedding dependencies not available. Install sentence-transformers for enhanced functionality.")
def build_index(self) -> IndexStats:
"""Build or update the file index."""
print(Colors.yellow("Building file index..."))
start_time = time.time()
self.indexer.build_index()
stats = self.indexer.get_stats()
elapsed = time.time() - start_time
if stats:
print(Colors.green(f"Index built: {stats.total_files} files, ~{stats.total_tokens:,} tokens ({elapsed:.2f}s)"))
else:
print(Colors.green(f"Index built successfully ({elapsed:.2f}s)"))
return stats
def analyze(self, prompt: str, mode: str = "auto", patterns: Optional[List[str]] = None,
token_limit: Optional[int] = None, use_embeddings: Optional[bool] = None) -> Dict[str, Any]:
"""Analyze and return relevant file paths for a given prompt."""
print(Colors.yellow("Analyzing project and prompt..."))
start_time = time.time()
# Load or build index
index = self.indexer.load_index()
if not index:
self.build_index()
index = self.indexer.load_index()
stats = self.indexer.get_stats()
print(Colors.cyan(f"Project stats: ~{stats.total_tokens:,} tokens across {stats.total_files} files"))
print(Colors.cyan(f"Categories: {', '.join(f'{k}: {v}' for k, v in stats.categories.items())}"))
# Determine project size
project_size = self._classify_project_size(stats.total_tokens)
print(Colors.cyan(f"Project size: {project_size}"))
# Analyze prompt context
print(Colors.yellow("Analyzing prompt context..."))
context_result = self.context_analyzer.analyze(prompt)
print(Colors.cyan(f"Identified: {len(context_result.domains)} domains, {len(context_result.languages)} languages"))
if context_result.domains:
print(Colors.cyan(f"Top domains: {', '.join(context_result.domains[:3])}"))
# Determine if we should use embeddings
should_use_embeddings = use_embeddings
if should_use_embeddings is None:
should_use_embeddings = (
self.embedding_manager is not None and
self.config.is_embedding_enabled() and
len(context_result.keywords) < 5 # Use embeddings for vague queries
)
similar_files = []
if should_use_embeddings and self.embedding_manager:
print(Colors.yellow("Using semantic similarity search..."))
# Update embeddings if needed
if not self.embedding_manager.embeddings_exist():
print(Colors.yellow("Building embeddings (first run)..."))
self.embedding_manager.update_embeddings(index)
similar_files = self.embedding_manager.find_similar_files(prompt, index)
print(Colors.cyan(f"Found {len(similar_files)} semantically similar files"))
# Match files to context
print(Colors.yellow("Matching files to context..."))
matching_result = self.path_matcher.match_files(
index,
context_result,
token_limit=token_limit,
explicit_patterns=patterns
)
elapsed = time.time() - start_time
print(Colors.green(f"Analysis complete: {len(matching_result.matched_files)} files, ~{matching_result.total_tokens:,} tokens"))
print(Colors.cyan(f"Confidence: {matching_result.confidence_score:.2f}"))
print(Colors.cyan(f"Execution time: {elapsed:.2f}s"))
return {
'files': [match.file_info.relative_path for match in matching_result.matched_files],
'total_tokens': matching_result.total_tokens,
'confidence': matching_result.confidence_score,
'context': {
'domains': context_result.domains,
'languages': context_result.languages,
'keywords': context_result.keywords
},
'stats': {
'project_size': project_size,
'total_files': stats.total_files,
'analysis_time': elapsed,
'embeddings_used': should_use_embeddings
}
}
def generate_command(self, prompt: str, tool: str = "gemini", **kwargs) -> str:
"""Generate a command for external tools (gemini/codex)."""
analysis_result = self.analyze(prompt, **kwargs)
# Format file patterns
file_patterns = " ".join(f"@{{{file}}}" for file in analysis_result['files'])
if tool == "gemini":
if len(analysis_result['files']) > 50: # Too many files for individual patterns
return f'gemini --all-files -p "{prompt}"'
else:
return f'gemini -p "{file_patterns} {prompt}"'
elif tool == "codex":
workspace_flag = "-s workspace-write" if analysis_result['total_tokens'] > 100000 else "-s danger-full-access"
return f'codex {workspace_flag} --full-auto exec "{file_patterns} {prompt}"'
else:
raise ValueError(f"Unsupported tool: {tool}")
def _classify_project_size(self, tokens: int) -> str:
"""Classify project size based on token count."""
small_limit = self.config.get('token_limits.small_project', 500000)
medium_limit = self.config.get('token_limits.medium_project', 2000000)
if tokens < small_limit:
return "small"
elif tokens < medium_limit:
return "medium"
else:
return "large"
def get_project_stats(self) -> Dict[str, Any]:
"""Get comprehensive project statistics."""
stats = self.indexer.get_stats()
embedding_stats = {}
if self.embedding_manager:
embedding_stats = {
'embeddings_exist': self.embedding_manager.embeddings_exist(),
'embedding_count': len(self.embedding_manager.load_embeddings()) if self.embedding_manager.embeddings_exist() else 0
}
return {
'files': stats.total_files,
'tokens': stats.total_tokens,
'size_bytes': stats.total_size,
'categories': stats.categories,
'project_size': self._classify_project_size(stats.total_tokens),
'last_updated': stats.last_updated,
'embeddings': embedding_stats,
'config': {
'cache_dir': self.config.get_cache_dir(),
'embedding_enabled': self.config.is_embedding_enabled(),
'exclude_patterns_count': len(self.config.get_exclude_patterns())
}
}
def main():
"""CLI entry point."""
parser = argparse.ArgumentParser(
description="Path-Aware Analyzer - Intelligent file pattern detection",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
python analyzer.py "analyze authentication flow"
python analyzer.py "fix database connection" --patterns "src/**/*.py"
python analyzer.py "review API endpoints" --tool gemini
python analyzer.py --stats
"""
)
parser.add_argument('prompt', nargs='?', help='Analysis prompt or task description')
parser.add_argument('--patterns', nargs='*', help='Explicit file patterns to include')
parser.add_argument('--tool', choices=['gemini', 'codex'], help='Generate command for specific tool')
parser.add_argument('--output', choices=['patterns', 'json'], default='patterns', help='Output format')
parser.add_argument('--verbose', '-v', action='store_true', help='Verbose output')
parser.add_argument('--stats', action='store_true', help='Show project statistics and exit')
parser.add_argument('--build-index', action='store_true', help='Build file index and exit')
args = parser.parse_args()
# Create analyzer with default values
analyzer = Analyzer(config_path=None, root_path=".")
# Handle special commands
if args.build_index:
analyzer.build_index()
return
if args.stats:
stats = analyzer.get_project_stats()
if args.output == 'json':
print(json.dumps(stats, indent=2, default=str))
else:
print(f"Total files: {stats['files']}")
print(f"Total tokens: {stats['tokens']:,}")
print(f"Categories: {stats['categories']}")
if 'embeddings' in stats:
print(f"Embeddings: {stats['embeddings']['embedding_count']}")
return
# Require prompt for analysis
if not args.prompt:
parser.error("Analysis prompt is required unless using --build-index or --stats")
# Perform analysis
try:
result = analyzer.analyze(
args.prompt,
patterns=args.patterns,
use_embeddings=False # Disable embeddings by default for simplicity
)
# Generate output
if args.tool:
# Generate command using already computed result
file_patterns = " ".join(f"@{{{file}}}" for file in result['files'])
if args.tool == "gemini":
if len(result['files']) > 50:
command = f'gemini --all-files -p "{args.prompt}"'
else:
command = f'gemini -p "{file_patterns} {args.prompt}"'
elif args.tool == "codex":
workspace_flag = "-s workspace-write" if result['total_tokens'] > 100000 else "-s danger-full-access"
command = f'codex {workspace_flag} --full-auto exec "{file_patterns} {args.prompt}"'
print(command)
elif args.output == 'json':
print(json.dumps(result, indent=2, default=str))
else: # patterns output (default)
for file_path in result['files']:
print(f"@{{{file_path}}}")
# Show verbose details
if args.verbose:
print(f"\n# Analysis Details:")
print(f"# Matched files: {len(result['files'])}")
print(f"# Total tokens: {result['total_tokens']:,}")
print(f"# Confidence: {result['confidence']:.2f}")
except KeyboardInterrupt:
print(Colors.warning("\nAnalysis interrupted by user"))
sys.exit(1)
except Exception as e:
print(Colors.error(f"Analysis failed: {e}"))
if args.verbose:
import traceback
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -1,141 +0,0 @@
#!/usr/bin/env python3
"""
API Documentation Indexer
Parses Markdown documentation to create a searchable index of classes and methods.
"""
import os
import re
import json
import logging
from pathlib import Path
from typing import Dict, Any
from core.file_indexer import FileIndexer
class ApiIndexer:
def __init__(self, config: Dict, root_path: str = "."):
self.config = config
self.root_path = Path(root_path).resolve()
self.file_indexer = FileIndexer(config, root_path)
self.api_index_file = self.file_indexer.cache_dir / "api_index.json"
self.logger = logging.getLogger(__name__)
def build_index(self):
"""Builds the API index from Markdown files."""
self.logger.info("Building API index...")
file_index = self.file_indexer.load_index()
if not file_index:
self.logger.info("File index not found, building it first.")
self.file_indexer.build_index()
file_index = self.file_indexer.load_index()
api_index = {}
for file_info in file_index.values():
if file_info.extension == ".md":
self.logger.debug(f"Parsing {file_info.path}")
try:
with open(file_info.path, "r", encoding="utf-8") as f:
content = f.read()
self._parse_markdown(content, file_info.relative_path, api_index)
except Exception as e:
self.logger.error(f"Error parsing {file_info.path}: {e}")
self._save_index(api_index)
self.logger.info(f"API index built with {len(api_index)} classes.")
def _parse_markdown(self, content: str, file_path: str, api_index: Dict):
"""Parses a single Markdown file for class and method info."""
class_name_match = re.search(r"^#\s+([A-Za-z0-9_]+)", content)
if not class_name_match:
return
class_name = class_name_match.group(1)
api_index[class_name] = {
"file_path": file_path,
"description": "",
"methods": {}
}
# Simple description extraction
desc_match = re.search(r"\*\*Description:\*\*\s*(.+)", content)
if desc_match:
api_index[class_name]["description"] = desc_match.group(1).strip()
# Method extraction
method_sections = re.split(r"###\s+", content)[1:]
for i, section in enumerate(method_sections):
method_signature_match = re.search(r"`(.+?)`", section)
if not method_signature_match:
continue
signature = method_signature_match.group(1)
method_name_match = re.search(r"([A-Za-z0-9_]+)\(“, signature)
if not method_name_match:
continue
method_name = method_name_match.group(1)
method_description = ""
method_desc_match = re.search(r"\*\*Description:\*\*\s*(.+)", section)
if method_desc_match:
method_description = method_desc_match.group(1).strip()
# A simple way to get a line number approximation
line_number = content.count("\n", 0, content.find(f"### `{signature}`")) + 1
api_index[class_name]["methods"Показать больше] = {
"signature": signature,
"description": method_description,
"line_number": line_number
}
def _save_index(self, api_index: Dict):
"""Saves the API index to a file."""
try:
with open(self.api_index_file, "w", encoding="utf-8") as f:
json.dump(api_index, f, indent=2)
except IOError as e:
self.logger.error(f"Could not save API index: {e}")
def search(self, class_name: str, method_name: str = None) -> Any:
"""Searches the API index for a class or method."""
if not self.api_index_file.exists():
self.build_index()
with open(self.api_index_file, "r", encoding="utf-8") as f:
api_index = json.load(f)
if class_name not in api_index:
return None
if method_name:
return api_index[class_name]["methods"].get(method_name)
else:
return api_index[class_name]
if __name__ == "__main__":
from core.config import get_config
import argparse
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(description="API Documentation Indexer.")
parser.add_argument("--build", action="store_true", help="Build the API index.")
parser.add_argument("--search_class", help="Search for a class.")
parser.add_argument("--search_method", help="Search for a method within a class (requires --search_class).")
args = parser.parse_args()
config = get_config()
api_indexer = ApiIndexer(config.to_dict())
if args.build:
api_indexer.build_index()
if args.search_class:
result = api_indexer.search(args.search_class, args.search_method)
if result:
print(json.dumps(result, indent=2))
else:
print("Not found.")

View File

@@ -1,276 +0,0 @@
{
"stats": {
"total_files": 26,
"total_tokens": 56126,
"total_size": 246519,
"categories": {
"code": 21,
"config": 3,
"docs": 1,
"other": 1
},
"last_updated": 1758177270.9103189
},
"files": {
"analyzer.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\analyzer.py",
"relative_path": "analyzer.py",
"size": 12595,
"modified_time": 1758175179.730658,
"extension": ".py",
"category": "code",
"estimated_tokens": 3072,
"content_hash": "3fb090745b5080e0731e7ef3fc94029d"
},
"cli.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\cli.py",
"relative_path": "cli.py",
"size": 8329,
"modified_time": 1758177193.3710027,
"extension": ".py",
"category": "code",
"estimated_tokens": 2030,
"content_hash": "b9f0b5d6a154cf51c8665b2344c9faf8"
},
"config.yaml": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\config.yaml",
"relative_path": "config.yaml",
"size": 4317,
"modified_time": 1758163450.6223683,
"extension": ".yaml",
"category": "config",
"estimated_tokens": 1040,
"content_hash": "b431b73dfa86ff83145468bbf4422a79"
},
"indexer.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\indexer.py",
"relative_path": "indexer.py",
"size": 7776,
"modified_time": 1758177151.2160237,
"extension": ".py",
"category": "code",
"estimated_tokens": 1893,
"content_hash": "f88b5e5bffce26f3170974df2906aac3"
},
"install.sh": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\install.sh",
"relative_path": "install.sh",
"size": 5236,
"modified_time": 1758161898.317552,
"extension": ".sh",
"category": "code",
"estimated_tokens": 1262,
"content_hash": "cc3a9121a0b8281457270f30ad76f5f6"
},
"requirements.txt": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\requirements.txt",
"relative_path": "requirements.txt",
"size": 495,
"modified_time": 1758164967.7707567,
"extension": ".txt",
"category": "docs",
"estimated_tokens": 118,
"content_hash": "aea2ba14dfa7b37b1dde5518de87d956"
},
"setup.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\setup.py",
"relative_path": "setup.py",
"size": 2860,
"modified_time": 1758177212.9095325,
"extension": ".py",
"category": "code",
"estimated_tokens": 692,
"content_hash": "609abf8b9c84a09f6a59d5815eb90bc5"
},
"__init__.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\__init__.py",
"relative_path": "__init__.py",
"size": 1065,
"modified_time": 1758177224.8017242,
"extension": ".py",
"category": "code",
"estimated_tokens": 257,
"content_hash": "47368b235086fc0c75ba34a824c58506"
},
"cache\\embeddings.pkl": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\cache\\embeddings.pkl",
"relative_path": "cache\\embeddings.pkl",
"size": 35109,
"modified_time": 1758175163.6754165,
"extension": ".pkl",
"category": "other",
"estimated_tokens": 4713,
"content_hash": "b8ed5c068acd5ed52ba10839701a5a24"
},
"cache\\embedding_index.json": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\cache\\embedding_index.json",
"relative_path": "cache\\embedding_index.json",
"size": 5589,
"modified_time": 1758175163.6764157,
"extension": ".json",
"category": "config",
"estimated_tokens": 1358,
"content_hash": "5c2ba41b1b69ce19d2fc3b5854f6ee53"
},
"cache\\file_index.json": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\cache\\file_index.json",
"relative_path": "cache\\file_index.json",
"size": 12164,
"modified_time": 1758165699.0883024,
"extension": ".json",
"category": "config",
"estimated_tokens": 2957,
"content_hash": "73563db28a2808aa28544c0275b97f94"
},
"core\\config.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\core\\config.py",
"relative_path": "core\\config.py",
"size": 12266,
"modified_time": 1758164531.5934324,
"extension": ".py",
"category": "code",
"estimated_tokens": 2985,
"content_hash": "d85aedc01a528b486d41acbd823181d7"
},
"core\\context_analyzer.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\core\\context_analyzer.py",
"relative_path": "core\\context_analyzer.py",
"size": 15002,
"modified_time": 1758164846.7665854,
"extension": ".py",
"category": "code",
"estimated_tokens": 3661,
"content_hash": "677903b5aaf3db13575ca1ca99ec7c16"
},
"core\\embedding_manager.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\core\\embedding_manager.py",
"relative_path": "core\\embedding_manager.py",
"size": 17271,
"modified_time": 1758166063.1635072,
"extension": ".py",
"category": "code",
"estimated_tokens": 4204,
"content_hash": "d8f52cb93140a46fe3d22d465ec01b22"
},
"core\\file_indexer.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\core\\file_indexer.py",
"relative_path": "core\\file_indexer.py",
"size": 14484,
"modified_time": 1758164612.5888917,
"extension": ".py",
"category": "code",
"estimated_tokens": 3525,
"content_hash": "1518d309108f3300417b65f6234241d1"
},
"core\\gitignore_parser.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\core\\gitignore_parser.py",
"relative_path": "core\\gitignore_parser.py",
"size": 6757,
"modified_time": 1758164472.643646,
"extension": ".py",
"category": "code",
"estimated_tokens": 1644,
"content_hash": "9cd97725576727080aaafd329d9ce2c4"
},
"core\\path_matcher.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\core\\path_matcher.py",
"relative_path": "core\\path_matcher.py",
"size": 19568,
"modified_time": 1758166045.8395746,
"extension": ".py",
"category": "code",
"estimated_tokens": 4767,
"content_hash": "f1dc44dc3ed67f100770aea40197623f"
},
"core\\__init__.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\core\\__init__.py",
"relative_path": "core\\__init__.py",
"size": 712,
"modified_time": 1758164419.4437866,
"extension": ".py",
"category": "code",
"estimated_tokens": 172,
"content_hash": "b25991cb8d977021362f45e121e89de7"
},
"tools\\module_analyzer.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\tools\\module_analyzer.py",
"relative_path": "tools\\module_analyzer.py",
"size": 14273,
"modified_time": 1758164687.488236,
"extension": ".py",
"category": "code",
"estimated_tokens": 3476,
"content_hash": "b958ec7ed264242f2bb30b1cca66b144"
},
"tools\\tech_stack.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\tools\\tech_stack.py",
"relative_path": "tools\\tech_stack.py",
"size": 7576,
"modified_time": 1758164695.643722,
"extension": ".py",
"category": "code",
"estimated_tokens": 1843,
"content_hash": "f391a45d8254f0c4f4f789027dd69afc"
},
"tools\\workflow_updater.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\tools\\workflow_updater.py",
"relative_path": "tools\\workflow_updater.py",
"size": 9577,
"modified_time": 1758164703.2230499,
"extension": ".py",
"category": "code",
"estimated_tokens": 2334,
"content_hash": "526edf0cfbe3c2041135eace9f89ef13"
},
"tools\\__init__.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\tools\\__init__.py",
"relative_path": "tools\\__init__.py",
"size": 329,
"modified_time": 1758165927.9923615,
"extension": ".py",
"category": "code",
"estimated_tokens": 79,
"content_hash": "139aa450d7511347cc6799c471eac745"
},
"utils\\cache.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\utils\\cache.py",
"relative_path": "utils\\cache.py",
"size": 12067,
"modified_time": 1758164781.2914226,
"extension": ".py",
"category": "code",
"estimated_tokens": 2929,
"content_hash": "39e49b731d601fafac74e96ed074e654"
},
"utils\\colors.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\utils\\colors.py",
"relative_path": "utils\\colors.py",
"size": 6959,
"modified_time": 1758165650.9865932,
"extension": ".py",
"category": "code",
"estimated_tokens": 1678,
"content_hash": "8bb57134555d8fb07d2e351d4e100f0f"
},
"utils\\io_helpers.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\utils\\io_helpers.py",
"relative_path": "utils\\io_helpers.py",
"size": 13773,
"modified_time": 1758164823.513003,
"extension": ".py",
"category": "code",
"estimated_tokens": 3349,
"content_hash": "aa54747c49319cc2c90c0544c668009a"
},
"utils\\__init__.py": {
"path": "D:\\Claude_dms3\\.claude\\python_script\\utils\\__init__.py",
"relative_path": "utils\\__init__.py",
"size": 370,
"modified_time": 1758164433.7142198,
"extension": ".py",
"category": "code",
"estimated_tokens": 88,
"content_hash": "62ec4a34f1643a23c79207061bdb8d49"
}
}
}

View File

@@ -66,12 +66,12 @@ file_extensions:
# Embedding/RAG configuration
embedding:
enabled: true # Set to true to enable RAG features
model: "codesage/codesage-large-v2" # CodeSage V2 for code embeddings
model: "all-MiniLM-L6-v2" # Stable general-purpose embedding model
cache_dir: "cache"
similarity_threshold: 0.6 # Higher threshold for better code similarity
max_context_length: 2048 # Increased for CodeSage V2 capabilities
batch_size: 8 # Reduced for larger model
trust_remote_code: true # Required for CodeSage V2
max_context_length: 512 # Standard context length
batch_size: 32 # Standard batch size
trust_remote_code: false # Not required for standard models
# Context analysis settings
context_analysis:

152
.claude/scripts/README.md Normal file
View File

@@ -0,0 +1,152 @@
# pycli - Python CLI Wrapper with Hierarchical Vector Database
This directory contains the bash wrapper and configuration for the enhanced Python-based analysis CLI with hierarchical vector database support.
## 📁 Files
- **`pycli`** - Main bash wrapper script
- **`pycli.conf`** - Configuration file
- **`install_pycli.sh`** - Installation script
- **`README.md`** - This documentation
## 🚀 Quick Installation
```bash
# Run the installation script
bash install_pycli.sh
# Follow the prompts to configure your shell
# The script will automatically detect your Python installation
# Verify installation
pycli --help
```
## 🎯 Key Features
### Hierarchical Vector Database
- **Smart Parent Discovery**: Subdirectories automatically use parent's vector database
- **No Redundant Processing**: Avoids duplicate vectorization in project subdirectories
- **Central Storage**: All vector databases stored in `~/.claude/vector_db/`
- **Path-based Organization**: Organized by project directory structure
### Unified Interface
- **Single Command**: `pycli` replaces complex Python script calls
- **Intelligent Context**: Automatic file discovery with semantic search
- **Tool Integration**: Seamless integration with Gemini and Codex
- **Configuration Management**: Environment-specific Python interpreter paths
## 📋 Common Commands
```bash
# Initialize new project
cd /path/to/your/project
pycli --init
# Smart analysis
pycli --analyze --query "authentication patterns" --tool gemini
# Direct analysis
pycli --analyze --tool codex -p "implement user login"
# Maintenance
pycli --update-embeddings
pycli --status
```
## 🔧 Configuration
Edit `~/.claude/scripts/pycli.conf` after installation:
```bash
# Python interpreter path
PYTHON_PATH="/usr/bin/python3"
# Vector database root directory
VECTOR_DB_ROOT="$HOME/.claude/vector_db"
# Python scripts directory
PYTHON_SCRIPT_DIR="$HOME/.claude/python_script"
```
## 🏗️ How Hierarchical DB Works
```
Project Structure: Vector Database:
/home/user/myproject/ ~/.claude/vector_db/
├── src/ └── home_user_myproject/
│ ├── auth/ ├── embeddings.pkl
│ └── api/ └── index.json
└── tests/
# All subdirectories use the single parent DB
```
## 📖 Documentation
For complete usage information, see:
- **Strategy Guide**: `~/.claude/workflows/python-tools-strategy.md`
- **Installation Guide**: Run `bash install_pycli.sh` for guided setup
## 🎪 Migration from Legacy Tools
```bash
# Replace gemini-wrapper
# OLD: ~/.claude/scripts/gemini-wrapper -p "prompt"
# NEW: pycli --analyze --tool gemini -p "prompt"
# Replace codex commands
# OLD: codex --full-auto exec "task"
# NEW: pycli --analyze --tool codex -p "task"
# Enhanced with context discovery
pycli --analyze --query "relevant context" --tool both
```
## 🐛 Troubleshooting
```bash
# Check system status
pycli --status
# Rebuild everything
pycli --init
# Test search functionality
pycli --test-search
# View configuration
cat ~/.claude/scripts/pycli.conf
```
## 💡 Advanced Usage
### Project Integration
```bash
# Add to package.json
{
"scripts": {
"analyze": "pycli --analyze --query",
"ai-init": "pycli --init",
"ai-update": "pycli --update-embeddings"
}
}
# Use in Makefiles
analyze:
pycli --analyze --query "$(QUERY)" --tool gemini
```
### CI/CD Integration
```yaml
# GitHub Actions example
- name: Update AI Context
run: pycli --update-embeddings
- name: Analyze Changes
run: pycli --analyze --query "code review" --tool gemini
```
---
For questions or issues, check the documentation or run `pycli --help`.

View File

@@ -0,0 +1,302 @@
#!/bin/bash
#==============================================================================
# pycli Installation Script
#
# This script installs the pycli bash wrapper and configuration files
# to the ~/.claude directory structure.
#==============================================================================
set -euo pipefail
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
NC='\033[0m' # No Color
# Print colored output
print_status() {
echo -e "${BLUE}[INFO]${NC} $1"
}
print_success() {
echo -e "${GREEN}[SUCCESS]${NC} $1"
}
print_warning() {
echo -e "${YELLOW}[WARNING]${NC} $1"
}
print_error() {
echo -e "${RED}[ERROR]${NC} $1"
}
#==============================================================================
# Configuration
#==============================================================================
SOURCE_DIR="$(cd "$(dirname "$0")" && pwd)"
INSTALL_BASE="$HOME/.claude"
INSTALL_DIR="$INSTALL_BASE/scripts"
PYTHON_SCRIPT_DIR="$INSTALL_BASE/python_script"
VECTOR_DB_DIR="$INSTALL_BASE/vector_db"
CONFIG_DIR="$INSTALL_BASE/config"
LOGS_DIR="$INSTALL_BASE/logs"
#==============================================================================
# Pre-installation Checks
#==============================================================================
print_status "Starting pycli installation..."
print_status "Source directory: $SOURCE_DIR"
print_status "Install directory: $INSTALL_DIR"
# Check if source files exist
if [[ ! -f "$SOURCE_DIR/pycli" ]]; then
print_error "pycli script not found in $SOURCE_DIR"
exit 1
fi
if [[ ! -f "$SOURCE_DIR/pycli.conf" ]]; then
print_error "pycli.conf not found in $SOURCE_DIR"
exit 1
fi
# Check if Python script directory exists
if [[ ! -d "$PYTHON_SCRIPT_DIR" ]]; then
print_warning "Python script directory not found: $PYTHON_SCRIPT_DIR"
print_status "Please ensure the Python scripts are installed in ~/.claude/python_script/"
read -p "Continue installation anyway? (y/N): " -n 1 -r
echo
if [[ ! $REPLY =~ ^[Yy]$ ]]; then
print_status "Installation cancelled."
exit 0
fi
fi
#==============================================================================
# Create Directory Structure
#==============================================================================
print_status "Creating directory structure..."
# Create all required directories
directories=(
"$INSTALL_BASE"
"$INSTALL_DIR"
"$VECTOR_DB_DIR"
"$CONFIG_DIR"
"$LOGS_DIR"
)
for dir in "${directories[@]}"; do
if [[ ! -d "$dir" ]]; then
mkdir -p "$dir"
print_status "Created directory: $dir"
else
print_status "Directory exists: $dir"
fi
done
#==============================================================================
# Install Files
#==============================================================================
print_status "Installing pycli files..."
# Backup existing files if they exist
if [[ -f "$INSTALL_DIR/pycli" ]]; then
backup_file="$INSTALL_DIR/pycli.backup.$(date +%Y%m%d_%H%M%S)"
cp "$INSTALL_DIR/pycli" "$backup_file"
print_warning "Backed up existing pycli to: $backup_file"
fi
if [[ -f "$INSTALL_DIR/pycli.conf" ]]; then
backup_file="$INSTALL_DIR/pycli.conf.backup.$(date +%Y%m%d_%H%M%S)"
cp "$INSTALL_DIR/pycli.conf" "$backup_file"
print_warning "Backed up existing pycli.conf to: $backup_file"
fi
# Copy files
cp "$SOURCE_DIR/pycli" "$INSTALL_DIR/"
cp "$SOURCE_DIR/pycli.conf" "$INSTALL_DIR/"
# Make executable
chmod +x "$INSTALL_DIR/pycli"
print_success "Files installed successfully"
#==============================================================================
# Configuration Updates
#==============================================================================
print_status "Updating configuration..."
# Detect Python path
PYTHON_CANDIDATES=(
"/usr/bin/python3"
"/usr/local/bin/python3"
"/opt/conda/bin/python"
"$(which python3 2>/dev/null || echo "")"
"$(which python 2>/dev/null || echo "")"
)
DETECTED_PYTHON=""
for candidate in "${PYTHON_CANDIDATES[@]}"; do
if [[ -n "$candidate" ]] && [[ -x "$candidate" ]]; then
# Test if it's Python 3
if "$candidate" -c "import sys; exit(0 if sys.version_info >= (3, 6) else 1)" 2>/dev/null; then
DETECTED_PYTHON="$candidate"
break
fi
fi
done
if [[ -n "$DETECTED_PYTHON" ]]; then
print_success "Detected Python: $DETECTED_PYTHON"
# Update configuration file
sed -i.bak "s|^PYTHON_PATH=.*|PYTHON_PATH=\"$DETECTED_PYTHON\"|" "$INSTALL_DIR/pycli.conf"
print_status "Updated PYTHON_PATH in configuration"
else
print_warning "Could not detect Python 3.6+. Please manually update PYTHON_PATH in:"
print_warning " $INSTALL_DIR/pycli.conf"
fi
#==============================================================================
# Shell Integration Setup
#==============================================================================
print_status "Setting up shell integration..."
# Detect shell
SHELL_RC=""
if [[ -n "${BASH_VERSION:-}" ]] || [[ "$SHELL" == *"bash"* ]]; then
SHELL_RC="$HOME/.bashrc"
elif [[ -n "${ZSH_VERSION:-}" ]] || [[ "$SHELL" == *"zsh"* ]]; then
SHELL_RC="$HOME/.zshrc"
fi
# Function to add alias/path to shell config
add_to_shell_config() {
local config_file="$1"
local content="$2"
if [[ -f "$config_file" ]]; then
if ! grep -q "pycli" "$config_file"; then
echo "" >> "$config_file"
echo "# pycli - Python CLI Wrapper" >> "$config_file"
echo "$content" >> "$config_file"
print_success "Added pycli to $config_file"
return 0
else
print_warning "pycli already configured in $config_file"
return 1
fi
fi
return 1
}
# Try to add alias automatically
ALIAS_ADDED=false
PATH_ADDED=false
if [[ -n "$SHELL_RC" ]]; then
# Try to add alias
if add_to_shell_config "$SHELL_RC" "alias pycli='$INSTALL_DIR/pycli'"; then
ALIAS_ADDED=true
fi
# Also add to PATH
if add_to_shell_config "$SHELL_RC" "export PATH=\"\$PATH:$INSTALL_DIR\""; then
PATH_ADDED=true
fi
fi
#==============================================================================
# Test Installation
#==============================================================================
print_status "Testing installation..."
# Test that the script is executable
if [[ -x "$INSTALL_DIR/pycli" ]]; then
print_success "pycli script is executable"
else
print_error "pycli script is not executable"
exit 1
fi
# Test configuration loading
if "$INSTALL_DIR/pycli" --help >/dev/null 2>&1; then
print_success "pycli configuration loads correctly"
else
print_warning "pycli configuration test failed - check Python path"
fi
#==============================================================================
# Installation Summary
#==============================================================================
print_success "Installation completed successfully!"
echo
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
echo "📁 Installation Summary:"
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
echo " • Executable: $INSTALL_DIR/pycli"
echo " • Config: $INSTALL_DIR/pycli.conf"
echo " • Vector DB: $VECTOR_DB_DIR/"
echo " • Logs: $LOGS_DIR/"
echo
echo "🚀 Quick Start:"
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
if [[ "$ALIAS_ADDED" == true ]]; then
echo " 1. Reload your shell configuration:"
echo " source $SHELL_RC"
echo
echo " 2. Initialize vector DB for a project:"
echo " cd /path/to/your/project"
echo " pycli --init"
echo
echo " 3. Start analyzing code:"
echo " pycli --analyze --query \"authentication patterns\" --tool gemini"
else
echo " 1. Add pycli to your shell configuration:"
if [[ -n "$SHELL_RC" ]]; then
echo " echo \"alias pycli='$INSTALL_DIR/pycli'\" >> $SHELL_RC"
echo " source $SHELL_RC"
else
echo " alias pycli='$INSTALL_DIR/pycli'"
fi
echo
echo " 2. Or add to PATH:"
echo " export PATH=\"\$PATH:$INSTALL_DIR\""
echo
echo " 3. Initialize vector DB for a project:"
echo " cd /path/to/your/project"
echo " pycli --init"
echo
echo " 4. Start analyzing code:"
echo " pycli --analyze --query \"authentication patterns\" --tool gemini"
fi
echo
echo "📚 Documentation:"
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
echo " • Help: pycli --help"
echo " • Strategy: ~/.claude/workflows/python-tools-strategy.md"
echo
echo "⚙️ Configuration:"
echo "━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
echo " • Edit config: $INSTALL_DIR/pycli.conf"
if [[ -z "$DETECTED_PYTHON" ]]; then
echo " • ⚠️ Please update PYTHON_PATH in pycli.conf"
fi
echo
print_success "Installation complete! 🎉"

225
.claude/scripts/pycli Normal file
View File

@@ -0,0 +1,225 @@
#!/bin/bash
#==============================================================================
# pycli - Python CLI Wrapper with Hierarchical Vector Database Support
#
# This script provides a bash wrapper for the Python-based analysis CLI,
# with intelligent hierarchical vector database management.
#
# Features:
# - Hierarchical vector database support (subdirs use parent's DB)
# - Configurable Python environment
# - Central vector database storage
# - Smart project root detection
#==============================================================================
set -euo pipefail
# Load configuration
CONFIG_FILE="$(dirname "$0")/pycli.conf"
if [[ -f "$CONFIG_FILE" ]]; then
source "$CONFIG_FILE"
else
echo "Error: Configuration file not found: $CONFIG_FILE"
echo "Please ensure pycli.conf exists in the same directory as this script."
exit 1
fi
# Validate required configuration
if [[ -z "${PYTHON_PATH:-}" ]]; then
echo "Error: PYTHON_PATH not set in configuration"
exit 1
fi
if [[ -z "${PYTHON_SCRIPT_DIR:-}" ]]; then
echo "Error: PYTHON_SCRIPT_DIR not set in configuration"
exit 1
fi
if [[ -z "${VECTOR_DB_ROOT:-}" ]]; then
echo "Error: VECTOR_DB_ROOT not set in configuration"
exit 1
fi
# Check if Python is available
if ! command -v "$PYTHON_PATH" &> /dev/null; then
echo "Error: Python not found at $PYTHON_PATH"
echo "Please update PYTHON_PATH in $CONFIG_FILE"
exit 1
fi
# Check if Python script directory exists
if [[ ! -d "$PYTHON_SCRIPT_DIR" ]]; then
echo "Error: Python script directory not found: $PYTHON_SCRIPT_DIR"
exit 1
fi
# Get current directory (will be used as project root for indexing)
CURRENT_DIR=$(pwd)
#==============================================================================
# Helper Functions
#==============================================================================
# Convert current path to vector DB path
# e.g., /home/user/project/subdir -> ~/.claude/vector_db/home_user_project_subdir
get_vector_db_path() {
local path="$1"
# Replace / with _ and remove leading /
local safe_path="${path//\//_}"
safe_path="${safe_path#_}"
# Handle Windows paths (C: -> C_)
safe_path="${safe_path//:/_}"
echo "$VECTOR_DB_ROOT/$safe_path"
}
# Find nearest parent with existing vector DB
find_project_root() {
local dir="$CURRENT_DIR"
local max_depth=10 # Prevent infinite loops
local depth=0
while [[ "$dir" != "/" ]] && [[ "$depth" -lt "$max_depth" ]]; do
local db_path=$(get_vector_db_path "$dir")
# Check if vector DB exists and has required files
if [[ -d "$db_path" ]] && ([[ -f "$db_path/embeddings.pkl" ]] || [[ -f "$db_path/index.json" ]]); then
echo "$dir"
return 0
fi
# Move to parent directory
local parent_dir=$(dirname "$dir")
if [[ "$parent_dir" == "$dir" ]]; then
break # Reached root
fi
dir="$parent_dir"
((depth++))
done
# No parent vector DB found, use current directory
echo "$CURRENT_DIR"
}
# Show help message
show_help() {
cat << EOF
pycli - Python CLI Wrapper with Hierarchical Vector Database Support
USAGE:
pycli [OPTIONS]
INITIALIZATION:
--init Initialize vector DB for current directory
--rebuild-index Rebuild file index from scratch
--update-embeddings Update vector embeddings for changed files
ANALYSIS:
--analyze Run analysis with tool
--query TEXT Semantic search query for context discovery
-p, --prompt TEXT Direct prompt for analysis
--tool [gemini|codex|both] Which tool to use (default: $DEFAULT_TOOL)
--top-k INTEGER Number of similar files to find (default: $DEFAULT_TOP_K)
STATUS:
--status Show system status
--test-search Test vector search functionality
EXAMPLES:
# Initialize vector DB for current project
pycli --init
# Smart analysis with context discovery
pycli --analyze --query "authentication patterns" --tool gemini
# Direct analysis with known prompt
pycli --analyze --tool codex -p "implement user login"
# Update embeddings after code changes
pycli --update-embeddings
# Check system status
pycli --status
For more information, see: ~/.claude/workflows/python-tools-strategy.md
EOF
}
#==============================================================================
# Main Logic
#==============================================================================
# Handle help
if [[ "${1:-}" == "--help" ]] || [[ "${1:-}" == "-h" ]] || [[ $# -eq 0 ]]; then
show_help
exit 0
fi
# Determine action based on arguments
case "${1:-}" in
--init|--rebuild-index)
# For initialization, always use current directory
PROJECT_ROOT="$CURRENT_DIR"
echo "Initializing vector database for: $PROJECT_ROOT"
;;
*)
# For other operations, find nearest project root
PROJECT_ROOT=$(find_project_root)
if [[ "$PROJECT_ROOT" != "$CURRENT_DIR" ]]; then
echo "Using existing vector database from: $PROJECT_ROOT"
fi
;;
esac
VECTOR_DB_PATH=$(get_vector_db_path "$PROJECT_ROOT")
# Create vector DB directory if needed
mkdir -p "$VECTOR_DB_PATH"
# Determine which Python script to call
if [[ "${1:-}" == "--update-embeddings" ]] || [[ "${1:-}" == "--rebuild-index" ]] || [[ "${1:-}" == "--init" ]]; then
# Use indexer.py for indexing operations
PYTHON_SCRIPT="$PYTHON_SCRIPT_DIR/indexer.py"
# Map --init to --rebuild-index --update-embeddings
if [[ "${1:-}" == "--init" ]]; then
set -- "--rebuild-index" "--update-embeddings"
fi
if [[ ! -f "$PYTHON_SCRIPT" ]]; then
echo "Error: indexer.py not found at $PYTHON_SCRIPT"
exit 1
fi
else
# Use cli.py for analysis operations
PYTHON_SCRIPT="$PYTHON_SCRIPT_DIR/cli.py"
if [[ ! -f "$PYTHON_SCRIPT" ]]; then
echo "Error: cli.py not found at $PYTHON_SCRIPT"
exit 1
fi
fi
#==============================================================================
# Environment Setup and Execution
#==============================================================================
# Set environment variables for Python scripts
export PYCLI_VECTOR_DB_PATH="$VECTOR_DB_PATH"
export PYCLI_PROJECT_ROOT="$PROJECT_ROOT"
export PYCLI_CONFIG_FILE="$CONFIG_FILE"
# Add some debugging info in verbose mode
if [[ "${PYCLI_VERBOSE:-}" == "1" ]]; then
echo "Debug: PROJECT_ROOT=$PROJECT_ROOT"
echo "Debug: VECTOR_DB_PATH=$VECTOR_DB_PATH"
echo "Debug: PYTHON_SCRIPT=$PYTHON_SCRIPT"
echo "Debug: Arguments: $*"
fi
# Execute Python script with all arguments
echo "Executing: $PYTHON_PATH $PYTHON_SCRIPT --root-path \"$PROJECT_ROOT\" $*"
exec "$PYTHON_PATH" "$PYTHON_SCRIPT" \
--root-path "$PROJECT_ROOT" \
"$@"

159
.claude/scripts/pycli.conf Normal file
View File

@@ -0,0 +1,159 @@
#==============================================================================
# pycli Configuration File
#
# This file contains configuration settings for the pycli bash wrapper.
# Modify these settings according to your environment.
#==============================================================================
#------------------------------------------------------------------------------
# Python Environment Configuration
#------------------------------------------------------------------------------
# Path to Python interpreter
# Examples:
# - System Python: /usr/bin/python3
# - Conda: /opt/conda/bin/python
# - Virtual env: /home/user/.virtualenvs/myenv/bin/python
# - Windows: /c/Python39/python.exe
PYTHON_PATH="/usr/bin/python3"
# Alternative Python paths for different environments
# Uncomment and modify as needed:
# PYTHON_PATH="/opt/conda/bin/python" # Conda
# PYTHON_PATH="$HOME/.pyenv/versions/3.11.0/bin/python" # pyenv
# PYTHON_PATH="/c/Python311/python.exe" # Windows
#------------------------------------------------------------------------------
# Directory Configuration
#------------------------------------------------------------------------------
# Python script location (should point to ~/.claude/python_script)
PYTHON_SCRIPT_DIR="$HOME/.claude/python_script"
# Central vector database storage location
VECTOR_DB_ROOT="$HOME/.claude/vector_db"
# Cache directory for temporary files
CACHE_DIR="$HOME/.claude/cache"
#------------------------------------------------------------------------------
# Default Tool Settings
#------------------------------------------------------------------------------
# Default tool to use when not specified
# Options: gemini, codex, both
DEFAULT_TOOL="gemini"
# Default number of similar files to return in vector search
DEFAULT_TOP_K="10"
# Default similarity threshold for vector search (0.0-1.0)
SIMILARITY_THRESHOLD="0.3"
# Default timeout for tool execution (seconds)
TOOL_TIMEOUT="300"
#------------------------------------------------------------------------------
# Vector Database Configuration
#------------------------------------------------------------------------------
# Enable hierarchical vector database mode
# When true, subdirectories will use parent directory's vector database
HIERARCHICAL_MODE="true"
# Maximum depth to search for parent vector databases
MAX_SEARCH_DEPTH="10"
# Minimum files required to create a separate vector database
MIN_FILES_FOR_SEPARATE_DB="50"
#------------------------------------------------------------------------------
# Performance Settings
#------------------------------------------------------------------------------
# Enable verbose output for debugging
# Set to "1" to enable, "0" to disable
PYCLI_VERBOSE="0"
# Enable caching of analysis results
ENABLE_CACHING="true"
# Cache TTL in seconds (1 hour default)
CACHE_TTL="3600"
#------------------------------------------------------------------------------
# Integration Settings
#------------------------------------------------------------------------------
# Gemini wrapper compatibility mode
# Set to "true" to enable compatibility with existing gemini-wrapper scripts
GEMINI_COMPAT_MODE="true"
# Codex integration settings
CODEX_COMPAT_MODE="true"
# Auto-build index if not found
AUTO_BUILD_INDEX="true"
# Auto-update embeddings when files change
AUTO_UPDATE_EMBEDDINGS="true"
#------------------------------------------------------------------------------
# Logging Configuration
#------------------------------------------------------------------------------
# Log level: DEBUG, INFO, WARNING, ERROR
LOG_LEVEL="INFO"
# Log file location
LOG_FILE="$HOME/.claude/logs/pycli.log"
# Enable log rotation
ENABLE_LOG_ROTATION="true"
# Maximum log file size (MB)
MAX_LOG_SIZE="10"
#------------------------------------------------------------------------------
# Advanced Configuration
#------------------------------------------------------------------------------
# Custom configuration file for Python scripts
# Leave empty to use default config.yaml
PYTHON_CONFIG_FILE=""
# Additional Python path directories
# Uncomment and modify if you need to add custom modules
# ADDITIONAL_PYTHON_PATH="/path/to/custom/modules"
# Environment variables to pass to Python scripts
# Uncomment and modify as needed
# CUSTOM_ENV_VAR1="value1"
# CUSTOM_ENV_VAR2="value2"
#------------------------------------------------------------------------------
# Platform-Specific Settings
#------------------------------------------------------------------------------
# Windows-specific settings
if [[ "$OSTYPE" == "msys" ]] || [[ "$OSTYPE" == "cygwin" ]]; then
# Adjust paths for Windows
VECTOR_DB_ROOT="${VECTOR_DB_ROOT//\\//}"
PYTHON_SCRIPT_DIR="${PYTHON_SCRIPT_DIR//\\//}"
fi
# macOS-specific settings
if [[ "$OSTYPE" == "darwin"* ]]; then
# macOS-specific optimizations
export OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES
fi
#------------------------------------------------------------------------------
# User Customization
#------------------------------------------------------------------------------
# Load user-specific configuration if it exists
USER_CONFIG="$HOME/.claude/config/pycli.user.conf"
if [[ -f "$USER_CONFIG" ]]; then
source "$USER_CONFIG"
fi

View File

@@ -0,0 +1,511 @@
---
name: python-tools-strategy
description: Command reference for Python-based tool invocation
type: command-reference
---
# Python Tools Command Reference
## ⚡ Quick Commands
**Smart Analysis**: `pycli --analyze --query "search term" --tool [gemini/codex]`
**Direct Tool Invocation**: `pycli --analyze --tool [gemini/codex] -p "prompt"`
**Vector Database Setup**: `pycli --init`
**Vector Database Update**: `pycli --update-embeddings`
## ⏰ When to Use What
### 🔄 Vector Database Timing
```bash
# FIRST TIME (run once per project)
pycli --init
# DAILY (when files change)
pycli --update-embeddings
# BEFORE ANALYSIS (check status)
pycli --status
```
### 🎯 Tool Selection Timing
- **Code Discovery** → Use `pycli --analyze --query` to find relevant files
- **Direct Analysis** → Use `pycli --analyze -p` when you know what to analyze
- **Development** → Use `--tool codex` for implementation tasks
- **Understanding** → Use `--tool gemini` for analysis and exploration
## 🎯 Core Commands
### Smart Analysis (Recommended)
```bash
# Find similar code patterns and analyze
pycli --analyze --query "authentication patterns" --tool gemini
# Search with development context
pycli --analyze --query "error handling" --tool codex
# Both discovery and analysis
pycli --analyze --query "database connections" --tool both
```
### Direct Tool Invocation
```bash
# Direct analysis with known context
pycli --analyze --tool gemini -p "analyze authentication patterns"
# Direct development task
pycli --analyze --tool codex -p "implement user login"
# Status and testing
pycli --status
pycli --test-search
```
### Vector Database Operations
```bash
# Initial setup (run once per project)
pycli --init
# Daily updates (run when files change)
pycli --update-embeddings
# Status check
pycli --status
```
## 📊 Command Matrix
| What You Want | Command | Use Case |
|---------------|---------|----------|
| **Smart analysis** | `pycli --analyze --query "pattern" --tool gemini` | Code discovery & analysis |
| **Direct analysis** | `pycli --analyze --tool gemini -p "prompt"` | Known target analysis |
| **Generate code** | `pycli --analyze --tool codex -p "task"` | Development |
| **Setup project** | `pycli --init` | First time setup |
| **Update search index** | `pycli --update-embeddings` | Maintenance |
| **Check status** | `pycli --status` | System health |
## 🚀 Usage Examples
### Replace Gemini Wrapper
```bash
# OLD: ~/.claude/scripts/gemini-wrapper -p "analyze auth patterns"
# NEW: pycli --analyze --tool gemini -p "analyze auth patterns"
```
### Replace Codex Commands
```bash
# OLD: codex --full-auto exec "implement login"
# NEW: pycli --analyze --tool codex -p "implement login"
```
### Smart Context Discovery
```bash
# Find relevant files first, then analyze
pycli --analyze --query "user authentication" --tool gemini
# Results include:
# - Hierarchical vector database search
# - Semantically similar files from project and parent directories
# - Generated tool command with intelligent context
# - Executed analysis with smart file selection
```
## 🔧 Command Options
### pycli (Unified Interface)
```bash
pycli [command] [options]
Commands:
--init Initialize vector database for current project
--analyze Run analysis with AI tools
--status Show system status and health
--test-search Test vector search functionality
--update-embeddings Update vector embeddings for changed files
Analysis Options:
--tool [gemini|codex|both] Which AI tool to use (default: gemini)
-p, --prompt TEXT Direct prompt for analysis
--query TEXT Semantic search query for context discovery
--top-k INTEGER Number of similar files to find (default: 10)
--similarity-threshold FLOAT Minimum similarity score (0.0-1.0)
Output Options:
--quiet Suppress progress output
--verbose Show detailed analysis information
--output [patterns|json] Output format (default: patterns)
```
### Installation & Setup
```bash
# Install pycli system
bash D:/Claude_dms3/.claude/scripts/install_pycli.sh
# Add to shell (automatic during install)
alias pycli='~/.claude/scripts/pycli'
# Verify installation
pycli --help
```
## 📋 Common Workflows
### 🚀 First-Time Setup (Vector Database)
```bash
# 1. Install pycli system
bash D:/Claude_dms3/.claude/scripts/install_pycli.sh
# 2. Initialize vector database for project
cd /path/to/your/project
pycli --init
# 3. Verify setup works
pycli --status
# 4. Test search functionality
pycli --test-search
```
### 🎯 Analysis Workflow (Recommended)
```bash
# 1. Update vectors (if files changed)
pycli --update-embeddings
# 2. Smart analysis with context discovery
pycli --analyze --query "what you're looking for" --tool gemini
# 3. Development with context
pycli --analyze --query "related patterns" --tool codex
```
### ⏰ When to Run Commands
#### 🔄 Vector Database Maintenance
```bash
# WHEN: First time using system
pycli --init
# WHEN: Files have been added/modified (daily/after coding)
pycli --update-embeddings
# WHEN: Before starting analysis (check if system ready)
pycli --status
```
#### 🎯 Analysis Timing
```bash
# WHEN: You need to find relevant code patterns
pycli --analyze --query "search term" --tool gemini
# WHEN: You have specific prompt and know context
pycli --analyze --tool gemini -p "specific prompt"
# WHEN: You want to develop/implement something
pycli --analyze --query "similar implementations" --tool codex
```
### Integration with Existing Tools
```bash
# In place of gemini-wrapper
pycli --analyze --tool gemini -p "$YOUR_PROMPT"
# In place of codex commands
pycli --analyze --tool codex -p "$YOUR_TASK"
# Enhanced with hierarchical context discovery
pycli --analyze --query "relevant context" --tool both
```
## 🎯 Quick Reference
### 🚀 Most Common Commands
```bash
# 1. Smart analysis (recommended first choice)
pycli --analyze --query "what you're looking for" --tool gemini
# 2. Direct tool call (when you know exactly what to analyze)
pycli --analyze --tool codex -p "what you want to do"
# 3. Keep embeddings updated (run after file changes)
pycli --update-embeddings
```
### ⚙️ Configuration (config.yaml)
```yaml
# Essential settings only
embeddings:
enabled: true
similarity_threshold: 0.3
tools:
default_tool: "gemini"
timeout: 300
```
### 🐛 Troubleshooting
```bash
# Check if everything works
pycli --status
# Rebuild if issues
pycli --init
# Test search functionality
pycli --test-search
```
## 🎪 Integration Decision Tree
```
Need to analyze code?
├─ Do you know specific files to analyze?
│ ├─ YES → Use: pycli --analyze --tool [gemini/codex] -p "prompt"
│ └─ NO → Use: pycli --analyze --query "search term" --tool [gemini/codex]
└─ Is vector database updated?
├─ UNSURE → Run: pycli --status
├─ NO → Run: pycli --update-embeddings
└─ YES → Proceed with analysis
```
## 🏗️ Hierarchical Vector Database
### Key Features
- **Automatic Parent Discovery**: Subdirectories automatically use parent's vector database
- **No Redundant Vectorization**: Avoids duplicate processing in project subdirectories
- **Central Storage**: All vector databases stored in `~/.claude/vector_db/`
- **Path-based Organization**: Vector DBs organized by project directory structure
### How It Works
```bash
# Project structure
/home/user/myproject/
├── src/
│ └── auth/ # Uses parent's vector DB
└── tests/ # Uses parent's vector DB
# Vector database structure
~/.claude/vector_db/
└── home_user_myproject/ # Single DB for entire project
├── embeddings.pkl
└── index.json
```
### Usage Examples
```bash
# Initialize at project root
cd /home/user/myproject
pycli --init
# Work in subdirectory (automatically finds parent DB)
cd src/auth
pycli --analyze --query "authentication patterns" # Uses parent's DB
# Work in another subdirectory
cd ../../tests
pycli --analyze --query "test patterns" # Uses same parent DB
```
## 🔧 Vector Database Setup & Maintenance
### ⚡ One-Time System Setup
```bash
# 1. Install dependencies (first time only)
cd .claude/python_script && pip install -r requirements.txt
# 2. Initialize vector database (creates embeddings)
python indexer.py --rebuild-index --update-embeddings
# 3. Verify setup works
python cli.py --status
# 4. Test search functionality
python cli.py --test-search
```
### 📋 What Happens During Setup
1. **File Indexing**: Scans project files and creates index
2. **Model Download**: Downloads AI model (first time only, ~500MB)
3. **Embedding Generation**: Creates vector representations of code
4. **Cache Creation**: Saves embeddings to `.claude/cache/embeddings/`
### 🎯 Verification Checklist
After setup, verify these work:
- [ ] `python cli.py --status` shows "System ready"
- [ ] `python cli.py --test-search` returns results
- [ ] Files exist: `.claude/cache/embeddings/embeddings.pkl`
- [ ] Search works: `python analyzer.py --query "test"`
### 🐛 Common Issues & Fixes
#### Nothing works / Setup failed
```bash
# Nuclear option - reset everything
rm -rf .claude/cache/embeddings/*
python indexer.py --rebuild-index --update-embeddings
```
#### Slow performance
```yaml
# In config.yaml - reduce batch size
embeddings:
batch_size: 16
```
#### No search results found
```yaml
# In config.yaml - lower similarity threshold
embeddings:
similarity_threshold: 0.1
```
#### Memory errors during setup
```yaml
# In config.yaml - use smaller batches
embeddings:
batch_size: 8
```
#### Model download fails
```bash
# Manual model download
python -c "from sentence_transformers import SentenceTransformer; SentenceTransformer('all-MiniLM-L6-v2')"
```
## 📋 Usage Rules & Best Practices
### 🎯 Core Rules
1. **Always check status first** - Run `python cli.py --status` before analysis
2. **Update after file changes** - Run `indexer.py --update-embeddings` when files modified
3. **Use vector search for discovery** - Use `analyzer.py --query` when exploring code
4. **Use direct tools for known targets** - Use `cli.py --analyze` for specific analysis
5. **Prefer context-aware tools** - Enhanced Python tools over legacy shell scripts
### ⏰ Maintenance Schedule
```bash
# DAILY (or after coding sessions)
python .claude/python_script/indexer.py --update-embeddings
# WEEKLY (or when config changes)
python .claude/python_script/cli.py --status # Check system health
# MONTHLY (or after major project changes)
python .claude/python_script/indexer.py --rebuild-index --update-embeddings
```
### 🎯 Tool Selection Rules
#### Use `cli.py --analyze --query` when:
- ✅ Exploring unfamiliar codebase
- ✅ Looking for similar code patterns
- ✅ Need context discovery for complex tasks
- ✅ Want smart file selection for tool execution
#### Use `cli.py --analyze -p` when:
- ✅ You know exactly what files to analyze
- ✅ Direct prompt execution without context search
- ✅ Quick tool invocation with known targets
#### Use `indexer.py` when:
- ✅ First time setup
- ✅ Files have been added/modified
- ✅ System performance degraded
- ✅ Configuration changed
### 🔧 Configuration Guidelines
#### Minimal config.yaml
```yaml
embeddings:
enabled: true
similarity_threshold: 0.3
model: "all-MiniLM-L6-v2"
batch_size: 32
tools:
default_tool: "gemini"
timeout: 300
```
#### Performance tuning
```yaml
# Large codebase (>1000 files)
embeddings:
batch_size: 64
similarity_threshold: 0.4
# Memory constrained
embeddings:
batch_size: 16
similarity_threshold: 0.2
# High accuracy needed
embeddings:
model: "all-mpnet-base-v2"
similarity_threshold: 0.5
```
### 🚀 Migration from Legacy Tools
#### Replace gemini-wrapper
```bash
# OLD (shell-based)
~/.claude/scripts/gemini-wrapper -p "analyze authentication"
# NEW (Python-based with hierarchical vector context)
pycli --analyze --query "authentication" --tool gemini
```
#### Replace codex commands
```bash
# OLD (direct execution)
codex --full-auto exec "implement user login"
# NEW (context-aware development with hierarchical DB)
pycli --analyze --query "login implementation patterns" --tool codex
```
#### Integration workflow
1. **Install pycli** - Run installation script once
2. **Initialize projects** - Run `pycli --init` in each project root
3. **Replace commands** - Update scripts to use `pycli` instead of direct Python calls
4. **Enjoy hierarchical benefits** - Automatic parent DB discovery in subdirectories
## 🎉 Advanced Features
### Bash Wrapper Benefits
- **Unified Interface**: Single `pycli` command for all operations
- **Smart Path Detection**: Automatically finds project roots and vector databases
- **Environment Management**: Configurable Python interpreter path
- **Hierarchical Support**: Intelligent parent directory discovery
### Configuration Flexibility
```bash
# Edit pycli configuration
nano ~/.claude/scripts/pycli.conf
# Key settings:
# PYTHON_PATH - Python interpreter location
# VECTOR_DB_ROOT - Central vector database storage
# HIERARCHICAL_MODE - Enable parent DB discovery
```
### Integration Examples
```bash
# Add to your project's package.json scripts
{
"scripts": {
"analyze": "pycli --analyze --query",
"init-ai": "pycli --init",
"update-ai": "pycli --update-embeddings"
}
}
# Use in Makefiles
analyze:
pycli --analyze --query "$(QUERY)" --tool gemini
# Use in CI/CD pipelines
- name: Update AI Context
run: pycli --update-embeddings
```