fix(vector-store): add lock protection for bulk insert mode flag

Protect _bulk_insert_mode flag and accumulation lists with
_ann_write_lock to prevent corruption during concurrent access.

Solution-ID: SOL-1735392000003
Issue-ID: ISS-1766921318981-12
Task-ID: T1
This commit is contained in:
catlog22
2025-12-29 19:16:30 +08:00
parent ffbc4a4b76
commit d8be23fa83
2 changed files with 82 additions and 15 deletions

View File

@@ -500,13 +500,13 @@ class VectorStore:
# Handle ANN index updates
if embeddings_list and update_ann and self._ensure_ann_index(len(embeddings_list[0])):
# In bulk insert mode, accumulate for later batch update
if self._bulk_insert_mode:
self._bulk_insert_ids.extend(ids)
self._bulk_insert_embeddings.extend(embeddings_list)
else:
# Normal mode: update immediately
with self._ann_write_lock:
with self._ann_write_lock:
# In bulk insert mode, accumulate for later batch update
if self._bulk_insert_mode:
self._bulk_insert_ids.extend(ids)
self._bulk_insert_embeddings.extend(embeddings_list)
else:
# Normal mode: update immediately
try:
embeddings_matrix = np.vstack(embeddings_list)
self._ann_index.add_vectors(ids, embeddings_matrix)
@@ -579,14 +579,14 @@ class VectorStore:
# Handle ANN index updates
if update_ann and self._ensure_ann_index(embeddings_matrix.shape[1]):
# In bulk insert mode, accumulate for later batch update
if self._bulk_insert_mode:
self._bulk_insert_ids.extend(ids)
# Split matrix into individual arrays for accumulation
self._bulk_insert_embeddings.extend([embeddings_matrix[i] for i in range(len(ids))])
else:
# Normal mode: update immediately
with self._ann_write_lock:
with self._ann_write_lock:
# In bulk insert mode, accumulate for later batch update
if self._bulk_insert_mode:
self._bulk_insert_ids.extend(ids)
# Split matrix into individual arrays for accumulation
self._bulk_insert_embeddings.extend([embeddings_matrix[i] for i in range(len(ids))])
else:
# Normal mode: update immediately
try:
self._ann_index.add_vectors(ids, embeddings_matrix)
if auto_save_ann:

View File

@@ -0,0 +1,67 @@
import tempfile
import threading
from pathlib import Path
import numpy as np
import pytest
from codexlens.entities import SemanticChunk
from codexlens.semantic.vector_store import VectorStore
@pytest.fixture()
def temp_db():
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdir:
yield Path(tmpdir) / "semantic.db"
def test_concurrent_bulk_insert(monkeypatch: pytest.MonkeyPatch, temp_db: Path) -> None:
"""Concurrent batch inserts in bulk mode should not corrupt accumulation state."""
store = VectorStore(temp_db)
monkeypatch.setattr(store, "_ensure_ann_index", lambda dim: True)
store.begin_bulk_insert()
errors: list[Exception] = []
lock = threading.Lock()
threads: list[threading.Thread] = []
def make_chunks(count: int, dim: int) -> list[SemanticChunk]:
chunks: list[SemanticChunk] = []
for i in range(count):
chunk = SemanticChunk(content=f"chunk {i}", metadata={})
chunk.embedding = np.random.randn(dim).astype(np.float32)
chunks.append(chunk)
return chunks
def worker(idx: int) -> None:
try:
dim = 8
if idx % 2 == 0:
chunks = make_chunks(5, dim)
store.add_chunks_batch([(c, f"file_{idx}.py") for c in chunks], auto_save_ann=False)
else:
chunks = [SemanticChunk(content=f"chunk {i}") for i in range(5)]
embeddings = np.random.randn(5, dim).astype(np.float32)
store.add_chunks_batch_numpy(
[(c, f"file_{idx}.py") for c in chunks],
embeddings_matrix=embeddings,
auto_save_ann=False,
)
except Exception as exc:
with lock:
errors.append(exc)
for i in range(10):
threads.append(threading.Thread(target=worker, args=(i,)))
for t in threads:
t.start()
for t in threads:
t.join()
assert not errors
assert len(store._bulk_insert_ids) == 50
assert len(store._bulk_insert_embeddings) == 50
assert store.count_chunks() == 50