Merge pull request #20 from catlog22/claude/add-cli-workflow-guide-01XnbftHLPsFZwGDFdXSteRN

Add CLI usage steps to workflow guide
This commit is contained in:
catlog22
2025-11-20 17:58:02 +08:00
committed by GitHub
2 changed files with 588 additions and 0 deletions

View File

@@ -253,6 +253,300 @@ flowchart TD
---
### 7⃣ **CLI 工具协作模式 - 多模型智能协同**
本项目集成了三种 CLI 工具,支持灵活的串联、并行和混合执行方式:
| 工具 | 核心能力 | 上下文长度 | 适用场景 |
|------|---------|-----------|---------|
| **Gemini** | 深度分析、架构设计、规划 | 超长上下文 | 代码理解、执行流追踪、技术方案评估 |
| **Qwen** | 代码审查、模式识别 | 超长上下文 | Gemini 备选、多维度分析 |
| **Codex** | 精确代码撰写、Bug定位 | 标准上下文 | 功能实现、测试生成、代码重构 |
#### 📋 三种执行模式
**1. 串联执行Serial Execution** - 顺序依赖
适用场景:后续任务依赖前一任务的结果
```bash
# 示例:分析后实现
# Step 1: Gemini 分析架构
使用 gemini 分析认证模块的架构设计,识别关键组件和数据流
# Step 2: Codex 基于分析结果实现
让 codex 根据上述架构分析,实现 JWT 认证中间件
```
**执行流程**
```
Gemini 分析 → 输出架构报告 → Codex 读取报告 → 实现代码
```
---
**2. 并行执行Parallel Execution** - 同时进行
适用场景:多个独立任务,无依赖关系
```bash
# 示例:多维度分析
用 gemini 分析认证模块的安全性,关注 JWT、密码存储、会话管理
用 qwen 分析认证模块的性能瓶颈,识别慢查询和优化点
让 codex 为认证模块生成单元测试,覆盖所有核心功能
```
**执行流程**
```
┌─ Gemini: 安全分析 ─┐
并行 ───┼─ Qwen: 性能分析 ──┼─→ 汇总结果
└─ Codex: 测试生成 ─┘
```
---
**3. 混合执行Hybrid Execution** - 串并结合
适用场景:复杂任务,部分并行、部分串联
```bash
# 示例:完整功能开发
# Phase 1: 并行分析(独立任务)
使用 gemini 分析现有认证系统的架构模式
用 qwen 评估 OAuth2 集成的技术方案
# Phase 2: 串联实现(依赖 Phase 1
让 codex 基于上述分析,实现 OAuth2 认证流程
# Phase 3: 并行优化(独立任务)
用 gemini 审查代码质量和安全性
让 codex 生成集成测试
```
**执行流程**
```
Phase 1: Gemini 分析 ──┐
Qwen 评估 ────┼─→ Phase 2: Codex 实现 ──→ Phase 3: Gemini 审查 ──┐
│ Codex 测试 ──┼─→ 完成
└────────────────────────────────────────────────┘
```
---
#### 🎯 语义调用 vs 命令调用
**方式一:自然语言语义调用**(推荐)
```bash
# 用户只需自然描述Claude Code 自动调用工具
"使用 gemini 分析这个模块的依赖关系"
→ Claude Code 自动生成cd src && gemini -p "分析依赖关系"
"让 codex 实现用户注册功能"
→ Claude Code 自动生成codex -C src/auth --full-auto exec "实现注册"
```
**方式二:直接命令调用**
```bash
# 通过 Slash 命令精准调用
/cli:chat --tool gemini "解释这个算法"
/cli:analyze --tool qwen "分析性能瓶颈"
/cli:execute --tool codex "优化查询性能"
```
---
#### 🔗 CLI 结果作为上下文Memory
CLI 工具的分析结果可以被保存并作为后续操作的上下文memory实现智能化的工作流程
**1. 结果持久化**
```bash
# CLI 执行结果自动保存到会话目录
/cli:chat --tool gemini "分析认证模块架构"
→ 保存到:.workflow/active/WFS-xxx/.chat/chat-[timestamp].md
/cli:analyze --tool qwen "评估性能瓶颈"
→ 保存到:.workflow/active/WFS-xxx/.chat/analyze-[timestamp].md
/cli:execute --tool codex "实现功能"
→ 保存到:.workflow/active/WFS-xxx/.chat/execute-[timestamp].md
```
**2. 结果作为规划依据**
```bash
# Step 1: 分析现状(生成 memory
使用 gemini 深度分析认证系统的架构、安全性和性能问题
→ 输出:详细分析报告(自动保存)
# Step 2: 基于分析结果规划
/workflow:plan "根据上述 Gemini 分析报告重构认证系统"
→ 系统自动读取 .chat/ 中的分析报告作为上下文
→ 生成精准的实施计划
```
**3. 结果作为实现依据**
```bash
# Step 1: 并行分析(生成多个 memory
使用 gemini 分析现有代码结构
用 qwen 评估技术方案可行性
→ 输出:多份分析报告
# Step 2: 基于所有分析结果实现
让 codex 综合上述 Gemini 和 Qwen 的分析,实现最优方案
→ Codex 自动读取前序分析结果
→ 生成符合架构设计的代码
```
**4. 跨会话引用**
```bash
# 引用历史会话的分析结果
/cli:execute --tool codex "参考 WFS-2024-001 中的架构分析,实现新的支付模块"
→ 系统自动加载指定会话的上下文
→ 基于历史分析进行实现
```
**5. Memory 更新循环**
```bash
# 迭代优化流程
使用 gemini 分析当前实现的问题
→ 生成问题报告memory
让 codex 根据问题报告优化代码
→ 实现改进(更新 memory
用 qwen 验证优化效果
→ 验证报告(追加 memory
# 所有结果累积为完整的项目 memory
→ 支持后续决策和实现
```
**Memory 流转示例**
```
┌─────────────────────────────────────────────────────────────┐
│ Phase 1: 分析阶段(生成 Memory
├─────────────────────────────────────────────────────────────┤
│ Gemini 分析 → 架构分析报告 (.chat/analyze-001.md) │
│ Qwen 评估 → 方案评估报告 (.chat/analyze-002.md) │
└─────────────────────┬───────────────────────────────────────┘
│ 作为 Memory 输入
┌─────────────────────────────────────────────────────────────┐
│ Phase 2: 规划阶段(使用 Memory
├─────────────────────────────────────────────────────────────┤
│ /workflow:plan → 读取分析报告 → 生成实施计划 │
│ (.task/IMPL-*.json) │
└─────────────────────┬───────────────────────────────────────┘
│ 作为 Memory 输入
┌─────────────────────────────────────────────────────────────┐
│ Phase 3: 实现阶段(使用 Memory
├─────────────────────────────────────────────────────────────┤
│ Codex 实现 → 读取计划+分析 → 生成代码 │
│ (.chat/execute-001.md) │
└─────────────────────┬───────────────────────────────────────┘
│ 作为 Memory 输入
┌─────────────────────────────────────────────────────────────┐
│ Phase 4: 验证阶段(使用 Memory
├─────────────────────────────────────────────────────────────┤
│ Gemini 审查 → 读取实现代码 → 质量报告 │
│ (.chat/review-001.md) │
└─────────────────────────────────────────────────────────────┘
完整的项目 Memory 库
支持未来所有决策和实现
```
**最佳实践**
1. **保持连续性**:在同一会话中执行相关任务,自动共享 memory
2. **显式引用**:跨会话时明确引用历史分析(如"参考 WFS-xxx 的分析"
3. **增量更新**:每次分析和实现都追加到 memory形成完整的决策链
4. **定期整理**:使用 `/memory:update-related` 将 CLI 结果整合到 CLAUDE.md
5. **质量优先**:高质量的分析 memory 能显著提升后续实现质量
---
#### 🔄 工作流集成示例
**集成到 Lite 工作流**
```bash
# 1. 规划阶段Gemini 分析
/workflow:lite-plan -e "重构支付模块"
→ 三维确认选择 "CLI 工具执行"
# 2. 执行阶段:选择执行方式
# 选项 A: 串联执行
"使用 gemini 分析支付流程""让 codex 重构代码"
# 选项 B: 并行分析 + 串联实现
"用 gemini 分析架构" + "用 qwen 评估方案"
"让 codex 基于分析结果重构"
```
**集成到 Full 工作流**
```bash
# 1. 规划阶段
/workflow:plan "实现分布式缓存"
/workflow:action-plan-verify
# 2. 分析阶段(并行)
使用 gemini 分析现有缓存架构
用 qwen 评估 Redis 集群方案
# 3. 实现阶段(串联)
/workflow:execute # 或使用 CLI
让 codex 实现 Redis 集群集成
# 4. 测试阶段(并行)
/workflow:test-gen WFS-cache
→ 内部使用 gemini 分析 + codex 生成测试
# 5. 审查阶段(串联)
用 gemini 审查代码质量
/workflow:review --type architecture
```
---
#### 💡 最佳实践
**何时使用串联**
- 实现依赖设计方案
- 测试依赖代码实现
- 优化依赖性能分析
**何时使用并行**
- 多维度分析(安全+性能+架构)
- 多模块独立开发
- 同时生成代码和测试
**何时使用混合**
- 复杂功能开发(分析→设计→实现→测试)
- 大规模重构(评估→规划→执行→验证)
- 技术栈迁移(调研→方案→实施→优化)
**工具选择建议**
1. **需要理解代码** → Gemini首选或 Qwen
2. **需要编写代码** → Codex
3. **复杂分析** → Gemini + Qwen 并行(互补验证)
4. **精确实现** → Codex基于 Gemini 分析)
5. **快速原型** → 直接使用 Codex
---
## 🔄 典型场景完整流程
### 场景A新功能开发知道怎么做

View File

@@ -253,6 +253,300 @@ flowchart TD
---
### 7⃣ **CLI Tools Collaboration Mode - Multi-Model Intelligent Coordination**
This project integrates three CLI tools supporting flexible serial, parallel, and hybrid execution:
| Tool | Core Capabilities | Context Length | Use Cases |
|------|------------------|----------------|-----------|
| **Gemini** | Deep analysis, architecture design, planning | Ultra-long context | Code understanding, execution flow tracing, technical solution evaluation |
| **Qwen** | Code review, pattern recognition | Ultra-long context | Gemini alternative, multi-dimensional analysis |
| **Codex** | Precise code writing, bug location | Standard context | Feature implementation, test generation, code refactoring |
#### 📋 Three Execution Modes
**1. Serial Execution** - Sequential dependency
Use case: Subsequent tasks depend on previous results
```bash
# Example: Analyze then implement
# Step 1: Gemini analyzes architecture
Use gemini to analyze the authentication module's architecture design, identify key components and data flow
# Step 2: Codex implements based on analysis
Have codex implement JWT authentication middleware based on the above architecture analysis
```
**Execution flow**:
```
Gemini analysis → Output architecture report → Codex reads report → Implement code
```
---
**2. Parallel Execution** - Concurrent processing
Use case: Multiple independent tasks with no dependencies
```bash
# Example: Multi-dimensional analysis
Use gemini to analyze authentication module security, focus on JWT, password storage, session management
Use qwen to analyze authentication module performance bottlenecks, identify slow queries and optimization points
Have codex generate unit tests for authentication module, covering all core features
```
**Execution flow**:
```
┌─ Gemini: Security analysis ─┐
Parallel ┼─ Qwen: Performance analysis ┼─→ Aggregate results
└─ Codex: Test generation ────┘
```
---
**3. Hybrid Execution** - Combined serial and parallel
Use case: Complex tasks with both parallel and serial phases
```bash
# Example: Complete feature development
# Phase 1: Parallel analysis (independent tasks)
Use gemini to analyze existing authentication system architecture patterns
Use qwen to evaluate OAuth2 integration technical solutions
# Phase 2: Serial implementation (depends on Phase 1)
Have codex implement OAuth2 authentication flow based on above analysis
# Phase 3: Parallel optimization (independent tasks)
Use gemini to review code quality and security
Have codex generate integration tests
```
**Execution flow**:
```
Phase 1: Gemini analysis ──┐
Qwen evaluation ──┼─→ Phase 2: Codex implementation ──→ Phase 3: Gemini review ──┐
│ Codex tests ───┼─→ Complete
└──────────────────────────────────────────────────────────────┘
```
---
#### 🎯 Semantic Invocation vs Command Invocation
**Method 1: Natural Language Semantic Invocation** (Recommended)
```bash
# Users simply describe naturally, Claude Code auto-invokes tools
"Use gemini to analyze this module's dependencies"
→ Claude Code auto-generates: cd src && gemini -p "Analyze dependencies"
"Have codex implement user registration feature"
→ Claude Code auto-generates: codex -C src/auth --full-auto exec "Implement registration"
```
**Method 2: Direct Command Invocation**
```bash
# Precise invocation via Slash commands
/cli:chat --tool gemini "Explain this algorithm"
/cli:analyze --tool qwen "Analyze performance bottlenecks"
/cli:execute --tool codex "Optimize query performance"
```
---
#### 🔗 CLI Results as Context (Memory)
CLI tool analysis results can be saved and used as context (memory) for subsequent operations, enabling intelligent workflows:
**1. Result Persistence**
```bash
# CLI execution results automatically saved to session directory
/cli:chat --tool gemini "Analyze authentication module architecture"
→ Saved to: .workflow/active/WFS-xxx/.chat/chat-[timestamp].md
/cli:analyze --tool qwen "Evaluate performance bottlenecks"
→ Saved to: .workflow/active/WFS-xxx/.chat/analyze-[timestamp].md
/cli:execute --tool codex "Implement feature"
→ Saved to: .workflow/active/WFS-xxx/.chat/execute-[timestamp].md
```
**2. Results as Planning Basis**
```bash
# Step 1: Analyze current state (generate memory)
Use gemini to deeply analyze authentication system architecture, security, and performance issues
→ Output: Detailed analysis report (auto-saved)
# Step 2: Plan based on analysis results
/workflow:plan "Refactor authentication system based on above Gemini analysis report"
→ System automatically reads analysis reports from .chat/ as context
→ Generate precise implementation plan
```
**3. Results as Implementation Basis**
```bash
# Step 1: Parallel analysis (generate multiple memories)
Use gemini to analyze existing code structure
Use qwen to evaluate technical solution feasibility
→ Output: Multiple analysis reports
# Step 2: Implement based on all analysis results
Have codex synthesize above Gemini and Qwen analyses to implement optimal solution
→ Codex automatically reads prior analysis results
→ Generate code conforming to architecture design
```
**4. Cross-Session References**
```bash
# Reference historical session analysis results
/cli:execute --tool codex "Refer to architecture analysis in WFS-2024-001, implement new payment module"
→ System automatically loads specified session context
→ Implement based on historical analysis
```
**5. Memory Update Loop**
```bash
# Iterative optimization flow
Use gemini to analyze problems in current implementation
→ Generate problem report (memory)
Have codex optimize code based on problem report
→ Implement improvements (update memory)
Use qwen to verify optimization effectiveness
→ Verification report (append to memory)
# All results accumulate as complete project memory
→ Support subsequent decisions and implementation
```
**Memory Flow Example**:
```
┌─────────────────────────────────────────────────────────────┐
│ Phase 1: Analysis Phase (Generate Memory) │
├─────────────────────────────────────────────────────────────┤
│ Gemini analysis → Architecture report (.chat/analyze-001.md)│
│ Qwen evaluation → Solution report (.chat/analyze-002.md) │
└─────────────────────┬───────────────────────────────────────┘
│ As Memory Input
┌─────────────────────────────────────────────────────────────┐
│ Phase 2: Planning Phase (Use Memory) │
├─────────────────────────────────────────────────────────────┤
│ /workflow:plan → Read analysis reports → Generate plan │
│ (.task/IMPL-*.json) │
└─────────────────────┬───────────────────────────────────────┘
│ As Memory Input
┌─────────────────────────────────────────────────────────────┐
│ Phase 3: Implementation Phase (Use Memory) │
├─────────────────────────────────────────────────────────────┤
│ Codex implement → Read plan+analysis → Generate code │
│ (.chat/execute-001.md) │
└─────────────────────┬───────────────────────────────────────┘
│ As Memory Input
┌─────────────────────────────────────────────────────────────┐
│ Phase 4: Verification Phase (Use Memory) │
├─────────────────────────────────────────────────────────────┤
│ Gemini review → Read implementation code → Quality report│
│ (.chat/review-001.md) │
└─────────────────────────────────────────────────────────────┘
Complete Project Memory Library
Supporting All Future Decisions and Implementation
```
**Best Practices**:
1. **Maintain Continuity**: Execute related tasks in the same session to automatically share memory
2. **Explicit References**: Explicitly reference historical analyses when crossing sessions (e.g., "Refer to WFS-xxx analysis")
3. **Incremental Updates**: Each analysis and implementation appends to memory, forming complete decision chain
4. **Regular Organization**: Use `/memory:update-related` to consolidate CLI results into CLAUDE.md
5. **Quality First**: High-quality analysis memory significantly improves subsequent implementation quality
---
#### 🔄 Workflow Integration Examples
**Integration with Lite Workflow**:
```bash
# 1. Planning phase: Gemini analysis
/workflow:lite-plan -e "Refactor payment module"
→ Three-dimensional confirmation selects "CLI Tools execution"
# 2. Execution phase: Choose execution method
# Option A: Serial execution
"Use gemini to analyze payment flow""Have codex refactor code"
# Option B: Parallel analysis + Serial implementation
"Use gemini to analyze architecture" + "Use qwen to evaluate solution"
"Have codex refactor based on analysis results"
```
**Integration with Full Workflow**:
```bash
# 1. Planning phase
/workflow:plan "Implement distributed cache"
/workflow:action-plan-verify
# 2. Analysis phase (parallel)
Use gemini to analyze existing cache architecture
Use qwen to evaluate Redis cluster solution
# 3. Implementation phase (serial)
/workflow:execute # Or use CLI
Have codex implement Redis cluster integration
# 4. Testing phase (parallel)
/workflow:test-gen WFS-cache
→ Internally uses gemini analysis + codex test generation
# 5. Review phase (serial)
Use gemini to review code quality
/workflow:review --type architecture
```
---
#### 💡 Best Practices
**When to use serial**:
- Implementation depends on design solution
- Testing depends on code implementation
- Optimization depends on performance analysis
**When to use parallel**:
- Multi-dimensional analysis (security + performance + architecture)
- Multi-module independent development
- Simultaneous code and test generation
**When to use hybrid**:
- Complex feature development (analysis → design → implementation → testing)
- Large-scale refactoring (evaluation → planning → execution → verification)
- Tech stack migration (research → solution → implementation → optimization)
**Tool selection guidelines**:
1. **Need to understand code** → Gemini (preferred) or Qwen
2. **Need to write code** → Codex
3. **Complex analysis** → Gemini + Qwen parallel (complementary verification)
4. **Precise implementation** → Codex (based on Gemini analysis)
5. **Quick prototype** → Direct Codex usage
---
## 🔄 Complete Flow for Typical Scenarios
### Scenario A: New Feature Development (Know How to Build)