fix: improve chunking logic in Chunker class and enhance smart search tool with comprehensive features

- Updated the Chunker class to adjust the window movement logic, ensuring proper handling of overlap lines.
- Introduced a new smart search tool with features including intent classification, CodexLens integration, multi-backend search routing, and index status checking.
- Implemented various search modes (auto, hybrid, exact, ripgrep, priority) with detailed metadata and error handling.
- Added support for progress tracking during index initialization and enhanced output transformation based on user-defined modes.
- Included comprehensive documentation for usage and parameters in the smart search tool.
This commit is contained in:
catlog22
2025-12-20 21:44:15 +08:00
parent be725ce21f
commit fd4a15c84e
9 changed files with 2289 additions and 218 deletions

View File

@@ -384,13 +384,16 @@ export async function handleCodexLensRoutes(ctx: RouteContext): Promise<boolean>
// API: CodexLens Init (Initialize workspace index)
if (pathname === '/api/codexlens/init' && req.method === 'POST') {
handlePostRequest(req, res, async (body) => {
const { path: projectPath, indexType = 'vector' } = body;
const { path: projectPath, indexType = 'vector', embeddingModel = 'code' } = body;
const targetPath = projectPath || initialPath;
// Build CLI arguments based on index type
const args = ['init', targetPath, '--json'];
if (indexType === 'normal') {
args.push('--no-embeddings');
} else {
// Add embedding model selection for vector index
args.push('--embedding-model', embeddingModel);
}
// Broadcast start event

View File

@@ -275,6 +275,7 @@ const i18n = {
'codexlens.semanticInstalled': 'Semantic dependencies installed',
'codexlens.semanticNotInstalled': 'Semantic dependencies not installed',
'codexlens.installDeps': 'Install Dependencies',
'codexlens.installDepsPrompt': 'Would you like to install them now? (This may take a few minutes)\n\nClick "Cancel" to create FTS index only.',
'codexlens.installingDeps': 'Installing dependencies...',
'codexlens.depsInstalled': 'Dependencies installed successfully',
'codexlens.depsInstallFailed': 'Failed to install dependencies',
@@ -324,8 +325,15 @@ const i18n = {
'index.cleanAllSuccess': 'All indexes cleaned',
'index.vectorIndex': 'Vector',
'index.normalIndex': 'FTS',
'index.fullIndex': 'Full Index',
'index.vectorDesc': 'Semantic search with embeddings',
'index.normalDesc': 'Fast full-text search only',
'index.fullDesc': 'FTS + Semantic search (recommended)',
'index.selectModel': 'Select embedding model',
'index.modelCode': 'Code (768d)',
'index.modelFast': 'Fast (384d)',
'index.modelMultilingual': 'Multilingual (1024d)',
'index.modelBalanced': 'Balanced (1024d)',
// Semantic Search Configuration
'semantic.settings': 'Semantic Search Settings',
@@ -1596,6 +1604,7 @@ const i18n = {
'codexlens.semanticInstalled': '语义搜索依赖已安装',
'codexlens.semanticNotInstalled': '语义搜索依赖未安装',
'codexlens.installDeps': '安装依赖',
'codexlens.installDepsPrompt': '是否立即安装?(可能需要几分钟)\n\n点击"取消"将只创建 FTS 索引。',
'codexlens.installingDeps': '安装依赖中...',
'codexlens.depsInstalled': '依赖安装成功',
'codexlens.depsInstallFailed': '依赖安装失败',
@@ -1645,8 +1654,15 @@ const i18n = {
'index.cleanAllSuccess': '所有索引已清理',
'index.vectorIndex': '向量索引',
'index.normalIndex': 'FTS索引',
'index.fullIndex': '全部索引',
'index.vectorDesc': '语义搜索(含嵌入向量)',
'index.normalDesc': '快速全文搜索',
'index.fullDesc': 'FTS + 语义搜索(推荐)',
'index.selectModel': '选择嵌入模型',
'index.modelCode': '代码优化 (768维)',
'index.modelFast': '快速轻量 (384维)',
'index.modelMultilingual': '多语言 (1024维)',
'index.modelBalanced': '高精度 (1024维)',
// Semantic Search 配置
'semantic.settings': '语义搜索设置',

View File

@@ -338,6 +338,17 @@ async function renderCliManager() {
if (window.lucide) lucide.createIcons();
}
// ========== Helper Functions ==========
/**
* Get selected embedding model from dropdown
* @returns {string} Selected model profile (code, fast, multilingual, balanced)
*/
function getSelectedModel() {
var select = document.getElementById('codexlensModelSelect');
return select ? select.value : 'code';
}
// ========== Tools Section (Left Column) ==========
function renderToolsSection() {
var container = document.getElementById('tools-section');
@@ -392,8 +403,15 @@ function renderToolsSection() {
'<div class="tool-item-right">' +
(codexLensStatus.ready
? '<span class="tool-status-text success"><i data-lucide="check-circle" class="w-3.5 h-3.5"></i> v' + (codexLensStatus.version || 'installed') + '</span>' +
'<button class="btn-sm btn-outline" onclick="event.stopPropagation(); initCodexLensIndex(\'vector\')" title="' + (t('index.vectorDesc') || 'Semantic search with embeddings') + '"><i data-lucide="sparkles" class="w-3 h-3"></i> ' + (t('index.vectorIndex') || 'Vector') + '</button>' +
'<button class="btn-sm btn-outline" onclick="event.stopPropagation(); initCodexLensIndex(\'normal\')" title="' + (t('index.normalDesc') || 'Fast full-text search only') + '"><i data-lucide="file-text" class="w-3 h-3"></i> ' + (t('index.normalIndex') || 'FTS') + '</button>' +
'<select id="codexlensModelSelect" class="btn-sm bg-muted border border-border rounded text-xs" onclick="event.stopPropagation()" title="' + (t('index.selectModel') || 'Select embedding model') + '">' +
'<option value="code">' + (t('index.modelCode') || 'Code (768d)') + '</option>' +
'<option value="fast">' + (t('index.modelFast') || 'Fast (384d)') + '</option>' +
'<option value="multilingual">' + (t('index.modelMultilingual') || 'Multilingual (1024d)') + '</option>' +
'<option value="balanced">' + (t('index.modelBalanced') || 'Balanced (1024d)') + '</option>' +
'</select>' +
'<button class="btn-sm btn-primary" onclick="event.stopPropagation(); initCodexLensIndex(\'full\', getSelectedModel())" title="' + (t('index.fullDesc') || 'FTS + Semantic search (recommended)') + '"><i data-lucide="layers" class="w-3 h-3"></i> ' + (t('index.fullIndex') || '全部索引') + '</button>' +
'<button class="btn-sm btn-outline" onclick="event.stopPropagation(); initCodexLensIndex(\'vector\', getSelectedModel())" title="' + (t('index.vectorDesc') || 'Semantic search with embeddings') + '"><i data-lucide="sparkles" class="w-3 h-3"></i> ' + (t('index.vectorIndex') || '向量索引') + '</button>' +
'<button class="btn-sm btn-outline" onclick="event.stopPropagation(); initCodexLensIndex(\'normal\')" title="' + (t('index.normalDesc') || 'Fast full-text search only') + '"><i data-lucide="file-text" class="w-3 h-3"></i> ' + (t('index.normalIndex') || 'FTS索引') + '</button>' +
'<button class="btn-sm btn-outline btn-danger" onclick="event.stopPropagation(); uninstallCodexLens()"><i data-lucide="trash-2" class="w-3 h-3"></i> ' + t('cli.uninstall') + '</button>'
: '<span class="tool-status-text muted"><i data-lucide="circle-dashed" class="w-3.5 h-3.5"></i> ' + t('cli.notInstalled') + '</span>' +
'<button class="btn-sm btn-primary" onclick="event.stopPropagation(); installCodexLens()"><i data-lucide="download" class="w-3 h-3"></i> ' + t('cli.install') + '</button>') +

View File

@@ -554,10 +554,54 @@ async function deleteModel(profile) {
/**
* Initialize CodexLens index with bottom floating progress bar
* @param {string} indexType - 'vector' (with embeddings) or 'normal' (FTS only)
* @param {string} indexType - 'vector' (with embeddings), 'normal' (FTS only), or 'full' (FTS + Vector)
* @param {string} embeddingModel - Model profile: 'code', 'fast', 'multilingual', 'balanced'
*/
function initCodexLensIndex(indexType) {
async function initCodexLensIndex(indexType, embeddingModel) {
indexType = indexType || 'vector';
embeddingModel = embeddingModel || 'code';
// For vector or full index, check if semantic dependencies are available
if (indexType === 'vector' || indexType === 'full') {
try {
var semanticResponse = await fetch('/api/codexlens/semantic/status');
var semanticStatus = await semanticResponse.json();
if (!semanticStatus.available) {
// Semantic deps not installed - show confirmation dialog
var installDeps = confirm(
(t('codexlens.semanticNotInstalled') || 'Semantic search dependencies are not installed.') + '\n\n' +
(t('codexlens.installDepsPrompt') || 'Would you like to install them now? (This may take a few minutes)\n\nClick "Cancel" to create FTS index only.')
);
if (installDeps) {
// Install semantic dependencies first
showRefreshToast(t('codexlens.installingDeps') || 'Installing semantic dependencies...', 'info');
try {
var installResponse = await fetch('/api/codexlens/semantic/install', { method: 'POST' });
var installResult = await installResponse.json();
if (!installResult.success) {
showRefreshToast((t('codexlens.depsInstallFailed') || 'Failed to install dependencies') + ': ' + installResult.error, 'error');
// Fall back to FTS only
indexType = 'normal';
} else {
showRefreshToast(t('codexlens.depsInstalled') || 'Dependencies installed successfully', 'success');
}
} catch (err) {
showRefreshToast((t('common.error') || 'Error') + ': ' + err.message, 'error');
indexType = 'normal';
}
} else {
// User chose to skip - create FTS only
indexType = 'normal';
}
}
} catch (err) {
console.warn('[CodexLens] Could not check semantic status:', err);
// Continue with requested type, backend will handle fallback
}
}
// Remove existing progress bar if any
closeCodexLensIndexModal();
@@ -566,7 +610,24 @@ function initCodexLensIndex(indexType) {
var progressBar = document.createElement('div');
progressBar.id = 'codexlensIndexFloating';
progressBar.className = 'fixed bottom-0 left-0 right-0 z-50 bg-card border-t border-border shadow-lg transform transition-transform duration-300';
var indexTypeLabel = indexType === 'vector' ? 'Vector' : 'FTS';
// Determine display label
var indexTypeLabel;
if (indexType === 'full') {
indexTypeLabel = 'FTS + Vector';
} else if (indexType === 'vector') {
indexTypeLabel = 'Vector';
} else {
indexTypeLabel = 'FTS';
}
// Add model info for vector indexes
var modelLabel = '';
if (indexType !== 'normal') {
var modelNames = { code: 'Code', fast: 'Fast', multilingual: 'Multi', balanced: 'Balanced' };
modelLabel = ' [' + (modelNames[embeddingModel] || embeddingModel) + ']';
}
progressBar.innerHTML =
'<div class="max-w-4xl mx-auto px-4 py-3">' +
'<div class="flex items-center justify-between gap-4">' +
@@ -574,7 +635,7 @@ function initCodexLensIndex(indexType) {
'<div class="animate-spin w-5 h-5 border-2 border-primary border-t-transparent rounded-full flex-shrink-0" id="codexlensIndexSpinner"></div>' +
'<div class="flex-1 min-w-0">' +
'<div class="flex items-center gap-2">' +
'<span class="font-medium text-sm">' + t('codexlens.indexing') + ' (' + indexTypeLabel + ')</span>' +
'<span class="font-medium text-sm">' + t('codexlens.indexing') + ' (' + indexTypeLabel + modelLabel + ')</span>' +
'<span class="text-xs text-muted-foreground" id="codexlensIndexPercent">0%</span>' +
'</div>' +
'<div class="text-xs text-muted-foreground truncate" id="codexlensIndexStatus">' + t('codexlens.preparingIndex') + '</div>' +
@@ -594,16 +655,21 @@ function initCodexLensIndex(indexType) {
document.body.appendChild(progressBar);
if (window.lucide) lucide.createIcons();
// Start indexing with specified type
startCodexLensIndexing(indexType);
// For 'full' type, use 'vector' in the API (it creates FTS + embeddings)
var apiIndexType = (indexType === 'full') ? 'vector' : indexType;
// Start indexing with specified type and model
startCodexLensIndexing(apiIndexType, embeddingModel);
}
/**
* Start the indexing process
* @param {string} indexType - 'vector' or 'normal'
* @param {string} embeddingModel - Model profile: 'code', 'fast', 'multilingual', 'balanced'
*/
async function startCodexLensIndexing(indexType) {
async function startCodexLensIndexing(indexType, embeddingModel) {
indexType = indexType || 'vector';
embeddingModel = embeddingModel || 'code';
var statusText = document.getElementById('codexlensIndexStatus');
var progressBar = document.getElementById('codexlensIndexProgressBar');
var percentText = document.getElementById('codexlensIndexPercent');
@@ -635,11 +701,11 @@ async function startCodexLensIndexing(indexType) {
}
try {
console.log('[CodexLens] Starting index for:', projectPath, 'type:', indexType);
console.log('[CodexLens] Starting index for:', projectPath, 'type:', indexType, 'model:', embeddingModel);
var response = await fetch('/api/codexlens/init', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ path: projectPath, indexType: indexType })
body: JSON.stringify({ path: projectPath, indexType: indexType, embeddingModel: embeddingModel })
});
var result = await response.json();

View File

@@ -429,7 +429,7 @@ function parseProgressLine(line: string): ProgressInfo | null {
}
/**
* Execute CodexLens CLI command
* Execute CodexLens CLI command with real-time progress updates
* @param args - CLI arguments
* @param options - Execution options
* @returns Execution result
@@ -463,34 +463,110 @@ async function executeCodexLens(args: string[], options: ExecuteOptions = {}): P
fullCmd = `${quotedPython} -m codexlens ${cmdArgs.join(' ')}`;
}
// Use exec with shell option for cross-platform compatibility
exec(fullCmd, {
cwd: process.platform === 'win32' ? undefined : cwd, // Don't use cwd on Windows, use cd command instead
// Use spawn with shell for real-time progress updates
// spawn streams output in real-time, unlike exec which buffers until completion
const child = spawn(fullCmd, [], {
cwd: process.platform === 'win32' ? undefined : cwd,
shell: process.platform === 'win32' ? process.env.ComSpec || true : true,
timeout,
maxBuffer: 50 * 1024 * 1024, // 50MB buffer for large outputs
shell: process.platform === 'win32' ? process.env.ComSpec : undefined,
}, (error, stdout, stderr) => {
if (error) {
if (error.killed) {
resolve({ success: false, error: 'Command timed out' });
} else {
resolve({ success: false, error: stderr || error.message });
}
return;
}
});
// Report final progress if callback provided
if (onProgress && stdout) {
const lines = stdout.split('\n');
for (const line of lines) {
const progress = parseProgressLine(line.trim());
let stdout = '';
let stderr = '';
let stdoutLineBuffer = '';
let stderrLineBuffer = '';
let timeoutHandle: NodeJS.Timeout | null = null;
let resolved = false;
// Helper to safely resolve only once
const safeResolve = (result: ExecuteResult) => {
if (resolved) return;
resolved = true;
if (timeoutHandle) {
clearTimeout(timeoutHandle);
timeoutHandle = null;
}
resolve(result);
};
// Set up timeout handler
if (timeout > 0) {
timeoutHandle = setTimeout(() => {
if (!resolved) {
child.kill('SIGTERM');
// Give it a moment to die gracefully, then force kill
setTimeout(() => {
if (!resolved) {
child.kill('SIGKILL');
}
}, 5000);
safeResolve({ success: false, error: 'Command timed out' });
}
}, timeout);
}
// Process stdout line by line for real-time progress
child.stdout?.on('data', (data: Buffer) => {
const chunk = data.toString();
stdoutLineBuffer += chunk;
stdout += chunk;
// Process complete lines
const lines = stdoutLineBuffer.split('\n');
stdoutLineBuffer = lines.pop() || ''; // Keep incomplete line in buffer
for (const line of lines) {
const trimmedLine = line.trim();
if (trimmedLine && onProgress) {
const progress = parseProgressLine(trimmedLine);
if (progress) {
onProgress(progress);
}
}
}
});
resolve({ success: true, output: stdout.trim() });
// Collect stderr
child.stderr?.on('data', (data: Buffer) => {
const chunk = data.toString();
stderrLineBuffer += chunk;
stderr += chunk;
// Also check stderr for progress (some tools output progress to stderr)
const lines = stderrLineBuffer.split('\n');
stderrLineBuffer = lines.pop() || '';
for (const line of lines) {
const trimmedLine = line.trim();
if (trimmedLine && onProgress) {
const progress = parseProgressLine(trimmedLine);
if (progress) {
onProgress(progress);
}
}
}
});
// Handle process errors (spawn failure)
child.on('error', (err) => {
safeResolve({ success: false, error: `Failed to start process: ${err.message}` });
});
// Handle process completion
child.on('close', (code) => {
// Process any remaining buffered content
if (stdoutLineBuffer.trim() && onProgress) {
const progress = parseProgressLine(stdoutLineBuffer.trim());
if (progress) {
onProgress(progress);
}
}
if (code === 0) {
safeResolve({ success: true, output: stdout.trim() });
} else {
safeResolve({ success: false, error: stderr.trim() || `Process exited with code ${code}` });
}
});
});
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -18,6 +18,27 @@ except ImportError:
logger = logging.getLogger(__name__)
def _get_path_column(conn: sqlite3.Connection) -> str:
"""Detect whether files table uses 'path' or 'full_path' column.
Args:
conn: SQLite connection to the index database
Returns:
Column name ('path' or 'full_path')
Raises:
ValueError: If neither column exists in files table
"""
cursor = conn.execute("PRAGMA table_info(files)")
columns = {row[1] for row in cursor.fetchall()}
if 'full_path' in columns:
return 'full_path'
elif 'path' in columns:
return 'path'
raise ValueError("files table has neither 'path' nor 'full_path' column")
def check_index_embeddings(index_path: Path) -> Dict[str, any]:
"""Check if an index has embeddings and return statistics.
@@ -75,10 +96,11 @@ def check_index_embeddings(index_path: Path) -> Dict[str, any]:
files_with_chunks = cursor.fetchone()[0]
# Get a sample of files without embeddings
cursor = conn.execute("""
SELECT full_path
path_column = _get_path_column(conn)
cursor = conn.execute(f"""
SELECT {path_column}
FROM files
WHERE full_path NOT IN (
WHERE {path_column} NOT IN (
SELECT DISTINCT file_path FROM semantic_chunks
)
LIMIT 5
@@ -113,7 +135,10 @@ def generate_embeddings(
chunk_size: int = 2000,
progress_callback: Optional[callable] = None,
) -> Dict[str, any]:
"""Generate embeddings for an index.
"""Generate embeddings for an index using memory-efficient batch processing.
This function processes files in small batches to keep memory usage under 2GB,
regardless of the total project size.
Args:
index_path: Path to _index.db file
@@ -181,126 +206,107 @@ def generate_embeddings(
"error": f"Failed to initialize components: {str(e)}",
}
# Read files from index
# --- MEMORY-OPTIMIZED STREAMING PROCESSING ---
# Process files in small batches to control memory usage
# This keeps peak memory under 2GB regardless of project size
start_time = time.time()
failed_files = []
total_chunks_created = 0
total_files_processed = 0
FILE_BATCH_SIZE = 100 # Process 100 files at a time
EMBEDDING_BATCH_SIZE = 8 # jina-embeddings-v2-base-code needs small batches
try:
with sqlite3.connect(index_path) as conn:
conn.row_factory = sqlite3.Row
cursor = conn.execute("SELECT full_path, content, language FROM files")
files = cursor.fetchall()
path_column = _get_path_column(conn)
# Get total file count for progress reporting
total_files = conn.execute("SELECT COUNT(*) FROM files").fetchone()[0]
if total_files == 0:
return {"success": False, "error": "No files found in index"}
if progress_callback:
progress_callback(f"Processing {total_files} files in batches of {FILE_BATCH_SIZE}...")
cursor = conn.execute(f"SELECT {path_column}, content, language FROM files")
batch_number = 0
while True:
# Fetch a batch of files (streaming, not fetchall)
file_batch = cursor.fetchmany(FILE_BATCH_SIZE)
if not file_batch:
break
batch_number += 1
batch_chunks_with_paths = []
files_in_batch_with_chunks = set()
# Step 1: Chunking for the current file batch
for file_row in file_batch:
file_path = file_row[path_column]
content = file_row["content"]
language = file_row["language"] or "python"
try:
chunks = chunker.chunk_sliding_window(
content,
file_path=file_path,
language=language
)
if chunks:
for chunk in chunks:
batch_chunks_with_paths.append((chunk, file_path))
files_in_batch_with_chunks.add(file_path)
except Exception as e:
logger.error(f"Failed to chunk {file_path}: {e}")
failed_files.append((file_path, str(e)))
if not batch_chunks_with_paths:
continue
batch_chunk_count = len(batch_chunks_with_paths)
if progress_callback:
progress_callback(f" Batch {batch_number}: {len(file_batch)} files, {batch_chunk_count} chunks")
# Step 2: Generate embeddings for this batch
batch_embeddings = []
try:
for i in range(0, batch_chunk_count, EMBEDDING_BATCH_SIZE):
batch_end = min(i + EMBEDDING_BATCH_SIZE, batch_chunk_count)
batch_contents = [chunk.content for chunk, _ in batch_chunks_with_paths[i:batch_end]]
embeddings = embedder.embed(batch_contents)
batch_embeddings.extend(embeddings)
except Exception as e:
logger.error(f"Failed to generate embeddings for batch {batch_number}: {str(e)}")
failed_files.extend([(file_row[path_column], str(e)) for file_row in file_batch])
continue
# Step 3: Assign embeddings to chunks
for (chunk, _), embedding in zip(batch_chunks_with_paths, batch_embeddings):
chunk.embedding = embedding
# Step 4: Store this batch to database immediately (releases memory)
try:
vector_store.add_chunks_batch(batch_chunks_with_paths)
total_chunks_created += batch_chunk_count
total_files_processed += len(files_in_batch_with_chunks)
except Exception as e:
logger.error(f"Failed to store batch {batch_number}: {str(e)}")
failed_files.extend([(file_row[path_column], str(e)) for file_row in file_batch])
# Memory is released here as batch_chunks_with_paths and batch_embeddings go out of scope
except Exception as e:
return {
"success": False,
"error": f"Failed to read files: {str(e)}",
}
if len(files) == 0:
return {
"success": False,
"error": "No files found in index",
}
if progress_callback:
progress_callback(f"Processing {len(files)} files...")
# Process all files using batch operations for optimal performance
start_time = time.time()
failed_files = []
# --- OPTIMIZATION Step 1: Collect all chunks from all files ---
if progress_callback:
progress_callback(f"Step 1/4: Chunking {len(files)} files...")
all_chunks_with_paths = [] # List of (chunk, file_path) tuples
files_with_chunks = set()
for idx, file_row in enumerate(files, 1):
file_path = file_row["full_path"]
content = file_row["content"]
language = file_row["language"] or "python"
try:
chunks = chunker.chunk_sliding_window(
content,
file_path=file_path,
language=language
)
if chunks:
for chunk in chunks:
all_chunks_with_paths.append((chunk, file_path))
files_with_chunks.add(file_path)
except Exception as e:
logger.error(f"Failed to chunk {file_path}: {e}")
failed_files.append((file_path, str(e)))
if not all_chunks_with_paths:
elapsed_time = time.time() - start_time
return {
"success": True,
"result": {
"chunks_created": 0,
"files_processed": len(files) - len(failed_files),
"files_failed": len(failed_files),
"elapsed_time": elapsed_time,
"model_profile": model_profile,
"model_name": embedder.model_name,
"failed_files": failed_files[:5],
"index_path": str(index_path),
},
}
total_chunks = len(all_chunks_with_paths)
# --- OPTIMIZATION Step 2: Batch generate embeddings with memory-safe batching ---
# Use smaller batches to avoid OOM errors while still benefiting from batch processing
# jina-embeddings-v2-base-code with long chunks needs small batches
BATCH_SIZE = 8 # Conservative batch size for memory efficiency
if progress_callback:
num_batches = (total_chunks + BATCH_SIZE - 1) // BATCH_SIZE
progress_callback(f"Step 2/4: Generating embeddings for {total_chunks} chunks ({num_batches} batches)...")
try:
all_embeddings = []
for batch_start in range(0, total_chunks, BATCH_SIZE):
batch_end = min(batch_start + BATCH_SIZE, total_chunks)
batch_contents = [chunk.content for chunk, _ in all_chunks_with_paths[batch_start:batch_end]]
batch_embeddings = embedder.embed(batch_contents)
all_embeddings.extend(batch_embeddings)
if progress_callback and total_chunks > BATCH_SIZE:
progress_callback(f" Batch {batch_start // BATCH_SIZE + 1}/{(total_chunks + BATCH_SIZE - 1) // BATCH_SIZE}: {len(batch_embeddings)} embeddings")
except Exception as e:
return {
"success": False,
"error": f"Failed to generate embeddings: {str(e)}",
}
# --- OPTIMIZATION Step 3: Assign embeddings back to chunks ---
if progress_callback:
progress_callback(f"Step 3/4: Assigning {len(all_embeddings)} embeddings...")
for (chunk, _), embedding in zip(all_chunks_with_paths, all_embeddings):
chunk.embedding = embedding
# --- OPTIMIZATION Step 4: Batch store all chunks in single transaction ---
if progress_callback:
progress_callback(f"Step 4/4: Storing {total_chunks} chunks to database...")
try:
vector_store.add_chunks_batch(all_chunks_with_paths)
except Exception as e:
return {
"success": False,
"error": f"Failed to store chunks: {str(e)}",
}
return {"success": False, "error": f"Failed to read or process files: {str(e)}"}
elapsed_time = time.time() - start_time
return {
"success": True,
"result": {
"chunks_created": total_chunks,
"files_processed": len(files_with_chunks),
"chunks_created": total_chunks_created,
"files_processed": total_files_processed,
"files_failed": len(failed_files),
"elapsed_time": elapsed_time,
"model_profile": model_profile,

View File

@@ -150,8 +150,13 @@ class Chunker:
chunk_idx += 1
# Move window, accounting for overlap
start = end - overlap_lines
if start >= len(lines) - overlap_lines:
step = lines_per_chunk - overlap_lines
if step <= 0:
step = 1 # Failsafe to prevent infinite loop
start += step
# Break if we've reached the end
if end >= len(lines):
break
return chunks