fix: improve chunking logic in Chunker class and enhance smart search tool with comprehensive features

- Updated the Chunker class to adjust the window movement logic, ensuring proper handling of overlap lines.
- Introduced a new smart search tool with features including intent classification, CodexLens integration, multi-backend search routing, and index status checking.
- Implemented various search modes (auto, hybrid, exact, ripgrep, priority) with detailed metadata and error handling.
- Added support for progress tracking during index initialization and enhanced output transformation based on user-defined modes.
- Included comprehensive documentation for usage and parameters in the smart search tool.
This commit is contained in:
catlog22
2025-12-20 21:44:15 +08:00
parent be725ce21f
commit fd4a15c84e
9 changed files with 2289 additions and 218 deletions

View File

@@ -554,10 +554,54 @@ async function deleteModel(profile) {
/**
* Initialize CodexLens index with bottom floating progress bar
* @param {string} indexType - 'vector' (with embeddings) or 'normal' (FTS only)
* @param {string} indexType - 'vector' (with embeddings), 'normal' (FTS only), or 'full' (FTS + Vector)
* @param {string} embeddingModel - Model profile: 'code', 'fast', 'multilingual', 'balanced'
*/
function initCodexLensIndex(indexType) {
async function initCodexLensIndex(indexType, embeddingModel) {
indexType = indexType || 'vector';
embeddingModel = embeddingModel || 'code';
// For vector or full index, check if semantic dependencies are available
if (indexType === 'vector' || indexType === 'full') {
try {
var semanticResponse = await fetch('/api/codexlens/semantic/status');
var semanticStatus = await semanticResponse.json();
if (!semanticStatus.available) {
// Semantic deps not installed - show confirmation dialog
var installDeps = confirm(
(t('codexlens.semanticNotInstalled') || 'Semantic search dependencies are not installed.') + '\n\n' +
(t('codexlens.installDepsPrompt') || 'Would you like to install them now? (This may take a few minutes)\n\nClick "Cancel" to create FTS index only.')
);
if (installDeps) {
// Install semantic dependencies first
showRefreshToast(t('codexlens.installingDeps') || 'Installing semantic dependencies...', 'info');
try {
var installResponse = await fetch('/api/codexlens/semantic/install', { method: 'POST' });
var installResult = await installResponse.json();
if (!installResult.success) {
showRefreshToast((t('codexlens.depsInstallFailed') || 'Failed to install dependencies') + ': ' + installResult.error, 'error');
// Fall back to FTS only
indexType = 'normal';
} else {
showRefreshToast(t('codexlens.depsInstalled') || 'Dependencies installed successfully', 'success');
}
} catch (err) {
showRefreshToast((t('common.error') || 'Error') + ': ' + err.message, 'error');
indexType = 'normal';
}
} else {
// User chose to skip - create FTS only
indexType = 'normal';
}
}
} catch (err) {
console.warn('[CodexLens] Could not check semantic status:', err);
// Continue with requested type, backend will handle fallback
}
}
// Remove existing progress bar if any
closeCodexLensIndexModal();
@@ -566,7 +610,24 @@ function initCodexLensIndex(indexType) {
var progressBar = document.createElement('div');
progressBar.id = 'codexlensIndexFloating';
progressBar.className = 'fixed bottom-0 left-0 right-0 z-50 bg-card border-t border-border shadow-lg transform transition-transform duration-300';
var indexTypeLabel = indexType === 'vector' ? 'Vector' : 'FTS';
// Determine display label
var indexTypeLabel;
if (indexType === 'full') {
indexTypeLabel = 'FTS + Vector';
} else if (indexType === 'vector') {
indexTypeLabel = 'Vector';
} else {
indexTypeLabel = 'FTS';
}
// Add model info for vector indexes
var modelLabel = '';
if (indexType !== 'normal') {
var modelNames = { code: 'Code', fast: 'Fast', multilingual: 'Multi', balanced: 'Balanced' };
modelLabel = ' [' + (modelNames[embeddingModel] || embeddingModel) + ']';
}
progressBar.innerHTML =
'<div class="max-w-4xl mx-auto px-4 py-3">' +
'<div class="flex items-center justify-between gap-4">' +
@@ -574,7 +635,7 @@ function initCodexLensIndex(indexType) {
'<div class="animate-spin w-5 h-5 border-2 border-primary border-t-transparent rounded-full flex-shrink-0" id="codexlensIndexSpinner"></div>' +
'<div class="flex-1 min-w-0">' +
'<div class="flex items-center gap-2">' +
'<span class="font-medium text-sm">' + t('codexlens.indexing') + ' (' + indexTypeLabel + ')</span>' +
'<span class="font-medium text-sm">' + t('codexlens.indexing') + ' (' + indexTypeLabel + modelLabel + ')</span>' +
'<span class="text-xs text-muted-foreground" id="codexlensIndexPercent">0%</span>' +
'</div>' +
'<div class="text-xs text-muted-foreground truncate" id="codexlensIndexStatus">' + t('codexlens.preparingIndex') + '</div>' +
@@ -594,16 +655,21 @@ function initCodexLensIndex(indexType) {
document.body.appendChild(progressBar);
if (window.lucide) lucide.createIcons();
// Start indexing with specified type
startCodexLensIndexing(indexType);
// For 'full' type, use 'vector' in the API (it creates FTS + embeddings)
var apiIndexType = (indexType === 'full') ? 'vector' : indexType;
// Start indexing with specified type and model
startCodexLensIndexing(apiIndexType, embeddingModel);
}
/**
* Start the indexing process
* @param {string} indexType - 'vector' or 'normal'
* @param {string} embeddingModel - Model profile: 'code', 'fast', 'multilingual', 'balanced'
*/
async function startCodexLensIndexing(indexType) {
async function startCodexLensIndexing(indexType, embeddingModel) {
indexType = indexType || 'vector';
embeddingModel = embeddingModel || 'code';
var statusText = document.getElementById('codexlensIndexStatus');
var progressBar = document.getElementById('codexlensIndexProgressBar');
var percentText = document.getElementById('codexlensIndexPercent');
@@ -635,11 +701,11 @@ async function startCodexLensIndexing(indexType) {
}
try {
console.log('[CodexLens] Starting index for:', projectPath, 'type:', indexType);
console.log('[CodexLens] Starting index for:', projectPath, 'type:', indexType, 'model:', embeddingModel);
var response = await fetch('/api/codexlens/init', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ path: projectPath, indexType: indexType })
body: JSON.stringify({ path: projectPath, indexType: indexType, embeddingModel: embeddingModel })
});
var result = await response.json();