- Fix model installation detection using fastembed ONNX cache names
- Add embeddings_config table for model metadata tracking
- Fix hybrid search segfault by using single-threaded GPU mode
- Suppress INFO logs in JSON mode to prevent error display
- Add model dropdown filtering to show only installed models
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
- Updated the Chunker class to adjust the window movement logic, ensuring proper handling of overlap lines.
- Introduced a new smart search tool with features including intent classification, CodexLens integration, multi-backend search routing, and index status checking.
- Implemented various search modes (auto, hybrid, exact, ripgrep, priority) with detailed metadata and error handling.
- Added support for progress tracking during index initialization and enhanced output transformation based on user-defined modes.
- Included comprehensive documentation for usage and parameters in the smart search tool.
- Updated the dashboard template to hide the Code Graph Explorer feature.
- Enhanced the `executeCodexLens` function to use `exec` for better cross-platform compatibility and improved command execution.
- Changed the default `maxResults` and `limit` parameters in the smart search tool to 10 for better performance.
- Introduced a new `priority` search mode in the smart search tool, replacing the previous `parallel` mode, which now follows a fallback strategy: hybrid -> exact -> ripgrep.
- Optimized the embedding generation process in the embedding manager by batching operations and using a cached embedder instance to reduce model loading overhead.
- Implemented a thread-safe singleton pattern for the embedder to improve performance across multiple searches.
- Added ANNIndex class for approximate nearest neighbor search using HNSW.
- Integrated ANN index with VectorStore for enhanced search capabilities.
- Updated test suite for ANN index, including tests for adding, searching, saving, and loading vectors.
- Modified existing tests to accommodate changes in search performance expectations.
- Improved error handling for file operations in tests to ensure compatibility with Windows file locks.
- Adjusted hybrid search performance assertions for increased stability in CI environments.
- Implement tests for migration 005 to verify removal of deprecated fields in the database schema.
- Ensure that new databases are created with a clean schema.
- Validate that keywords are correctly extracted from the normalized file_keywords table.
- Test symbol insertion without deprecated fields and subdir operations without direct_files.
- Create a detailed search comparison test to evaluate vector search vs hybrid search performance.
- Add a script for reindexing projects to extract code relationships and verify GraphAnalyzer functionality.
- Include a test script to check TreeSitter parser availability and relationship extraction from sample files.
- Added a new Storage Manager component to handle storage statistics, project cleanup, and configuration for CCW centralized storage.
- Introduced functions to calculate directory sizes, get project storage stats, and clean specific or all storage.
- Enhanced SQLiteStore with a public API for executing queries securely.
- Updated tests to utilize the new execute_query method and validate storage management functionalities.
- Improved performance by implementing connection pooling with idle timeout management in SQLiteStore.
- Added new fields (token_count, symbol_type) to the symbols table and adjusted related insertions.
- Enhanced error handling and logging for storage operations.
- Implemented unit tests for the Tokenizer class, covering various text inputs, edge cases, and fallback mechanisms.
- Created performance benchmarks comparing tiktoken and pure Python implementations for token counting.
- Developed extensive tests for TreeSitterSymbolParser across Python, JavaScript, and TypeScript, ensuring accurate symbol extraction and parsing.
- Added configuration documentation for MCP integration and custom prompts, enhancing usability and flexibility.
- Introduced a refactor script for GraphAnalyzer to streamline future improvements.
- Implement full coverage tests for Embedder model loading and embedding generation
- Add CRUD operations and caching tests for VectorStore
- Include cosine similarity computation tests
- Validate semantic search accuracy and relevance through various queries
- Establish performance benchmarks for embedding and search operations
- Ensure edge cases and error handling are covered
- Test thread safety and concurrent access scenarios
- Verify availability of semantic search dependencies
- Implemented tests for the ChunkConfig and Chunker classes, covering default and custom configurations.
- Added tests for symbol-based chunking, including single and multiple symbols, handling of empty symbols, and preservation of line numbers.
- Developed tests for sliding window chunking, ensuring correct chunking behavior with various content sizes and configurations.
- Created integration tests for semantic search, validating embedding generation, vector storage, and search accuracy across a complex codebase.
- Included performance tests for embedding generation and search operations.
- Established tests for chunking strategies, comparing symbol-based and sliding window approaches.
- Enhanced test coverage for edge cases, including handling of unicode characters and out-of-bounds symbol ranges.