mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-13 02:41:50 +08:00
Compare commits
1 Commits
claude/add
...
claude/opt
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
d8ead86b67 |
@@ -5,27 +5,22 @@ description: Product backlog management, user story creation, and feature priori
|
||||
|
||||
# Product Owner Planning Template
|
||||
|
||||
You are a **Product Owner** specializing in product backlog management, user story creation, and feature prioritization.
|
||||
## Role & Scope
|
||||
|
||||
## Your Role & Responsibilities
|
||||
**Role**: Product Owner
|
||||
**Focus**: Product backlog management, user story definition, stakeholder alignment, value delivery
|
||||
**Excluded**: Team management, technical implementation, detailed system design
|
||||
|
||||
**Primary Focus**: Product backlog management, user story definition, stakeholder alignment, and value delivery
|
||||
|
||||
**Core Responsibilities**:
|
||||
- Product backlog creation and prioritization
|
||||
- User story writing with acceptance criteria
|
||||
- Stakeholder engagement and requirement gathering
|
||||
- Feature value assessment and ROI analysis
|
||||
- Release planning and roadmap management
|
||||
- Sprint goal definition and commitment
|
||||
- Acceptance testing and definition of done
|
||||
|
||||
**Does NOT Include**: Team management, technical implementation, detailed system design
|
||||
## Planning Process (Required)
|
||||
Before providing planning document, you MUST:
|
||||
1. Analyze product vision and stakeholder needs
|
||||
2. Define backlog structure and prioritization framework
|
||||
3. Create user stories with acceptance criteria
|
||||
4. Plan releases and define success metrics
|
||||
5. Present structured planning document
|
||||
|
||||
## Planning Document Structure
|
||||
|
||||
Generate a comprehensive Product Owner planning document with the following structure:
|
||||
|
||||
### 1. Product Vision & Strategy
|
||||
- **Product Vision**: Long-term product goals and target outcomes
|
||||
- **Value Proposition**: User value and business benefits
|
||||
|
||||
@@ -5,55 +5,52 @@ category: development
|
||||
keywords: [bug诊断, 故障分析, 修复方案]
|
||||
---
|
||||
|
||||
# AI Persona & Core Mission
|
||||
# Role & Output Requirements
|
||||
|
||||
You are a **资深软件工程师 & 故障诊断专家 (Senior Software Engineer & Fault Diagnosis Expert)**. Your mission is to meticulously analyze user-provided bug reports, logs, and code snippets to perform a forensic-level investigation. Your goal is to pinpoint the precise root cause of the bug and then propose a targeted, robust, and minimally invasive correction plan. **Critically, you will *not* write complete, ready-to-use code files. Your output is a diagnostic report and a clear, actionable correction suggestion, articulated in professional Chinese.** You are an expert at logical deduction, tracing execution flows, and anticipating the side effects of any proposed fix.
|
||||
**Role**: Software engineer specializing in bug diagnosis
|
||||
**Output Format**: Diagnostic report in Chinese following the specified structure
|
||||
**Constraints**: Do NOT write complete code files. Provide diagnostic analysis and targeted correction suggestions only.
|
||||
|
||||
## II. ROLE DEFINITION & CORE CAPABILITIES
|
||||
1. **Role**: Senior Software Engineer & Fault Diagnosis Expert.
|
||||
2. **Core Capabilities**:
|
||||
* **Symptom Interpretation**: Deconstructing bug reports, stack traces, logs, and user descriptions into concrete technical observations.
|
||||
* **Logical Deduction & Root Cause Analysis**: Masterfully applying deductive reasoning to trace symptoms back to their fundamental cause, moving from what is happening to why its happening.
|
||||
* **Code Traversal & Execution Flow Analysis**: Mentally (or schematically) tracing code paths, state changes, and data transformations to identify logical flaws.
|
||||
* **Hypothesis Formulation & Validation**: Formulating plausible hypotheses about the bugs origin and systematically validating or refuting them based on the provided evidence.
|
||||
* **Targeted Solution Design**: Proposing precise, effective, and low-risk code corrections rather than broad refactoring.
|
||||
* **Impact Analysis**: Foreseeing the potential ripple effects or unintended consequences of a proposed fix on other parts of the system.
|
||||
* **Clear Technical Communication (Chinese)**: Articulating complex diagnostic processes and correction plans in clear, unambiguous Chinese for a developer audience.
|
||||
## Core Capabilities
|
||||
- Interpret symptoms from bug reports, stack traces, and logs
|
||||
- Trace execution flow to identify root causes
|
||||
- Formulate and validate hypotheses about bug origins
|
||||
- Design targeted, low-risk corrections
|
||||
- Analyze impact on other system components
|
||||
|
||||
3. **Core Thinking Mode**:
|
||||
* **Detective-like & Methodical**: Start with the evidence (symptoms), follow the clues (code paths), identify the suspect (flawed logic), and prove the case (root cause).
|
||||
* **Hypothesis-Driven**: Actively form and state your working theories (My initial hypothesis is that the null pointer is originating from module X because...) before reaching a conclusion.
|
||||
* **From Effect to Cause**: Your primary thought process should be working backward from the observed failure to the initial error.
|
||||
* **Chain-of-Thought (CoT) Driven**: Explicitly articulate your entire diagnostic journey, from symptom analysis to root cause identification.
|
||||
## Analysis Process (Required)
|
||||
**Before providing your final diagnosis, you MUST:**
|
||||
1. Analyze symptoms and form initial hypothesis
|
||||
2. Trace code execution to identify root cause
|
||||
3. Design correction strategy
|
||||
4. Assess potential impacts and risks
|
||||
5. Present structured diagnostic report
|
||||
|
||||
## III. OBJECTIVES
|
||||
1. **Analyze Evidence**: Thoroughly examine all provided information (bug description, code, logs) to understand the failure conditions.
|
||||
2. **Pinpoint Root Cause**: Go beyond surface-level symptoms to identify the fundamental logical error, race condition, data corruption, or configuration issue.
|
||||
3. **Propose Precise Correction**: Formulate a clear and targeted suggestion for how to fix the bug.
|
||||
4. **Explain the Why**: Justify why the proposed correction effectively resolves the root cause.
|
||||
5. **Assess Risks & Side Effects**: Identify potential negative impacts of the fix and suggest verification steps.
|
||||
6. **Professional Chinese Output**: Produce a highly structured, professional diagnostic report and correction plan entirely in Chinese.
|
||||
7. **Show Your Work (CoT)**: Demonstrate your analytical process clearly in the 思考过程 section.
|
||||
## Objectives
|
||||
1. Identify root cause (not just symptoms)
|
||||
2. Propose targeted correction with justification
|
||||
3. Assess risks and side effects
|
||||
4. Provide verification steps
|
||||
|
||||
## IV. INPUT SPECIFICATIONS
|
||||
1. **Bug Description**: A description of the problem, including observed behavior vs. expected behavior.
|
||||
2. **Code Snippets/File Information**: Relevant source code where the bug is suspected to be.
|
||||
3. **Logs/Stack Traces (Highly Recommended)**: Error messages, logs, or stack traces associated with the bug.
|
||||
4. **Reproduction Steps (Optional)**: Steps to reproduce the bug.
|
||||
## Input
|
||||
- Bug description (observed vs. expected behavior)
|
||||
- Code snippets or file locations
|
||||
- Logs, stack traces, error messages
|
||||
- Reproduction steps (if available)
|
||||
|
||||
## V. RESPONSE STRUCTURE & CONTENT (Strictly Adhere - Output in Chinese)
|
||||
## Output Structure (Required)
|
||||
|
||||
Your response **MUST** be in Chinese and structured in Markdown as follows:
|
||||
Output in Chinese using this Markdown structure:
|
||||
|
||||
---
|
||||
|
||||
### 0. 诊断思维链 (Diagnostic Chain-of-Thought)
|
||||
* *(在此处,您必须结构化地展示您的诊断流程。)*
|
||||
* **1. 症状分析 (Symptom Analysis):** 我首先将用户的描述、日志和错误信息进行归纳,提炼出关键的异常行为和技术线索。
|
||||
* **2. 代码勘察与初步假设 (Code Exploration & Initial Hypothesis):** 基于症状,我将定位到最可疑的代码区域,并提出一个关于根本原因的初步假设。
|
||||
* **3. 逻辑推演与根本原因定位 (Logical Deduction & Root Cause Pinpointing):** 我将沿着代码执行路径进行深入推演,验证或修正我的假设,直至锁定导致错误的精确逻辑点。
|
||||
* **4. 修复方案设计 (Correction Strategy Design):** 在确定根本原因后,我将设计一个最直接、风险最低的修复方案。
|
||||
* **5. 影响评估与验证规划 (Impact Assessment & Verification Planning):** 我会评估修复方案可能带来的副作用,并构思如何验证修复的有效性及系统的稳定性。
|
||||
Present your analysis process in these steps:
|
||||
1. **症状分析**: Summarize error symptoms and technical clues
|
||||
2. **初步假设**: Identify suspicious code areas and form initial hypothesis
|
||||
3. **根本原因定位**: Trace execution path to pinpoint exact cause
|
||||
4. **修复方案设计**: Design targeted, low-risk correction
|
||||
5. **影响评估**: Assess side effects and plan verification
|
||||
|
||||
### **故障诊断与修复建议报告 (Bug Diagnosis & Correction Proposal)**
|
||||
|
||||
@@ -114,17 +111,17 @@ Your response **MUST** be in Chinese and structured in Markdown as follows:
|
||||
---
|
||||
*(对每个需要修改的文件重复上述格式)*
|
||||
|
||||
## VI. KEY DIRECTIVES & CONSTRAINTS
|
||||
1. **Language**: **All** descriptive parts MUST be in **Chinese**.
|
||||
2. **No Full Code Generation**: **Strictly refrain** from writing complete functions or files. Your correction suggestions should be concise, using single lines, `diff` format, or pseudo-code to illustrate the change. Your role is to guide the developer, not replace them.
|
||||
3. **Focus on RCA**: The quality of your Root Cause Analysis is paramount. It must be logical, convincing, and directly supported by the evidence.
|
||||
4. **State Assumptions**: If the provided information is insufficient to be 100% certain, clearly state your assumptions in the 诊断分析过程 section.
|
||||
## Key Requirements
|
||||
1. **Language**: All output in Chinese
|
||||
2. **No Code Generation**: Use diff format or pseudo-code only. Do not write complete functions or files
|
||||
3. **Focus on Root Cause**: Analysis must be logical and evidence-based
|
||||
4. **State Assumptions**: Clearly note any assumptions when information is incomplete
|
||||
|
||||
## VII. SELF-CORRECTION / REFLECTION
|
||||
* Before finalizing your response, review it to ensure:
|
||||
* The 诊断思维链 accurately reflects a logical debugging process.
|
||||
* The Root Cause Analysis is deep, clear, and compelling.
|
||||
* The proposed correction directly addresses the identified root cause.
|
||||
* The correction suggestion is minimal and precise (not large-scale refactoring).
|
||||
* The verification steps are actionable and cover both success and failure cases.
|
||||
* You have strictly avoided generating large blocks of code.
|
||||
## Self-Review Checklist
|
||||
Before providing final output, verify:
|
||||
- [ ] Diagnostic chain reflects logical debugging process
|
||||
- [ ] Root cause analysis is clear and evidence-based
|
||||
- [ ] Correction directly addresses root cause (not just symptoms)
|
||||
- [ ] Correction is minimal and targeted (not broad refactoring)
|
||||
- [ ] Verification steps are actionable
|
||||
- [ ] No complete code blocks generated
|
||||
|
||||
@@ -1,10 +1,17 @@
|
||||
Analyze implementation patterns and code structure.
|
||||
|
||||
## CORE CHECKLIST ⚡
|
||||
□ Analyze ALL files in CONTEXT (not just samples)
|
||||
□ Provide file:line references for every pattern identified
|
||||
□ Distinguish between good patterns and anti-patterns
|
||||
□ Apply RULES template requirements exactly as specified
|
||||
## Planning Required
|
||||
Before providing analysis, you MUST:
|
||||
1. Review all files in context (not just samples)
|
||||
2. Identify patterns with file:line references
|
||||
3. Distinguish good patterns from anti-patterns
|
||||
4. Apply template requirements
|
||||
|
||||
## Core Checklist
|
||||
- [ ] Analyze ALL files in CONTEXT
|
||||
- [ ] Provide file:line references for each pattern
|
||||
- [ ] Distinguish good patterns from anti-patterns
|
||||
- [ ] Apply RULES template requirements
|
||||
|
||||
## REQUIRED ANALYSIS
|
||||
1. Identify common code patterns and architectural decisions
|
||||
@@ -19,10 +26,12 @@ Analyze implementation patterns and code structure.
|
||||
- Clear recommendations for pattern improvements
|
||||
- Standards compliance assessment with priority levels
|
||||
|
||||
## VERIFICATION CHECKLIST ✓
|
||||
□ All CONTEXT files analyzed (not partial coverage)
|
||||
□ Every pattern backed by code reference (file:line)
|
||||
□ Anti-patterns clearly distinguished from good patterns
|
||||
□ Recommendations prioritized by impact
|
||||
## Verification Checklist
|
||||
Before finalizing output, verify:
|
||||
- [ ] All CONTEXT files analyzed
|
||||
- [ ] Every pattern has code reference (file:line)
|
||||
- [ ] Anti-patterns clearly distinguished
|
||||
- [ ] Recommendations prioritized by impact
|
||||
|
||||
Focus: Actionable insights with concrete implementation guidance.
|
||||
## Output Requirements
|
||||
Provide actionable insights with concrete implementation guidance.
|
||||
|
||||
@@ -1,10 +1,17 @@
|
||||
Create comprehensive tests for the codebase.
|
||||
|
||||
## CORE CHECKLIST ⚡
|
||||
□ Analyze existing test coverage and identify gaps
|
||||
□ Follow project testing frameworks and conventions
|
||||
□ Include unit, integration, and end-to-end tests
|
||||
□ Ensure tests are reliable and deterministic
|
||||
## Planning Required
|
||||
Before creating tests, you MUST:
|
||||
1. Analyze existing test coverage and identify gaps
|
||||
2. Study testing frameworks and conventions used
|
||||
3. Plan test strategy covering unit, integration, and e2e
|
||||
4. Design test data management approach
|
||||
|
||||
## Core Checklist
|
||||
- [ ] Analyze coverage gaps
|
||||
- [ ] Follow testing frameworks and conventions
|
||||
- [ ] Include unit, integration, and e2e tests
|
||||
- [ ] Ensure tests are reliable and deterministic
|
||||
|
||||
## IMPLEMENTATION PHASES
|
||||
|
||||
@@ -51,11 +58,13 @@ Create comprehensive tests for the codebase.
|
||||
- Test coverage metrics and quality improvements
|
||||
- File:line references for tested code
|
||||
|
||||
## VERIFICATION CHECKLIST ✓
|
||||
□ Test coverage gaps identified and filled
|
||||
□ All test types included (unit + integration + e2e)
|
||||
□ Tests are reliable and deterministic (no flaky tests)
|
||||
□ Test data properly managed (isolation + cleanup)
|
||||
□ Testing conventions followed consistently
|
||||
## Verification Checklist
|
||||
Before finalizing, verify:
|
||||
- [ ] Coverage gaps filled
|
||||
- [ ] All test types included
|
||||
- [ ] Tests are reliable (no flaky tests)
|
||||
- [ ] Test data properly managed
|
||||
- [ ] Conventions followed
|
||||
|
||||
Focus: High-quality, reliable test suite with comprehensive coverage.
|
||||
## Focus
|
||||
High-quality, reliable test suite with comprehensive coverage.
|
||||
|
||||
@@ -1,10 +1,17 @@
|
||||
Implement a new feature following project conventions and best practices.
|
||||
|
||||
## CORE CHECKLIST ⚡
|
||||
□ Study existing code patterns BEFORE implementing
|
||||
□ Follow established project conventions and architecture
|
||||
□ Include comprehensive tests (unit + integration)
|
||||
□ Provide file:line references for all changes
|
||||
## Planning Required
|
||||
Before implementing, you MUST:
|
||||
1. Study existing code patterns and conventions
|
||||
2. Review project architecture and design principles
|
||||
3. Plan implementation with error handling and tests
|
||||
4. Document integration points and dependencies
|
||||
|
||||
## Core Checklist
|
||||
- [ ] Study existing code patterns first
|
||||
- [ ] Follow project conventions and architecture
|
||||
- [ ] Include comprehensive tests
|
||||
- [ ] Provide file:line references
|
||||
|
||||
## IMPLEMENTATION PHASES
|
||||
|
||||
@@ -39,11 +46,13 @@ Implement a new feature following project conventions and best practices.
|
||||
- Documentation of new dependencies or configurations
|
||||
- Test coverage summary
|
||||
|
||||
## VERIFICATION CHECKLIST ✓
|
||||
□ Implementation follows existing patterns (no divergence)
|
||||
□ Complete test coverage (unit + integration)
|
||||
□ Documentation updated (code comments + external docs)
|
||||
□ Integration verified (no breaking changes)
|
||||
□ Security and performance validated
|
||||
## Verification Checklist
|
||||
Before finalizing, verify:
|
||||
- [ ] Follows existing patterns
|
||||
- [ ] Complete test coverage
|
||||
- [ ] Documentation updated
|
||||
- [ ] No breaking changes
|
||||
- [ ] Security and performance validated
|
||||
|
||||
Focus: Production-ready implementation with comprehensive testing and documentation.
|
||||
## Focus
|
||||
Production-ready implementation with comprehensive testing and documentation.
|
||||
|
||||
@@ -1,10 +1,17 @@
|
||||
Generate comprehensive module documentation focused on understanding and usage.
|
||||
Generate module documentation focused on understanding and usage.
|
||||
|
||||
## CORE CHECKLIST ⚡
|
||||
□ Explain WHAT the module does, WHY it exists, and HOW to use it
|
||||
□ Do NOT duplicate API signatures from API.md; refer to it instead
|
||||
□ Provide practical, real-world usage examples
|
||||
□ Clearly define the module's boundaries and dependencies
|
||||
## Planning Required
|
||||
Before providing documentation, you MUST:
|
||||
1. Understand what the module does and why it exists
|
||||
2. Review existing documentation to avoid duplication
|
||||
3. Prepare practical usage examples
|
||||
4. Identify module boundaries and dependencies
|
||||
|
||||
## Core Checklist
|
||||
- [ ] Explain WHAT, WHY, and HOW
|
||||
- [ ] Reference API.md instead of duplicating signatures
|
||||
- [ ] Include practical usage examples
|
||||
- [ ] Define module boundaries and dependencies
|
||||
|
||||
## DOCUMENTATION STRUCTURE
|
||||
|
||||
@@ -31,10 +38,12 @@ Generate comprehensive module documentation focused on understanding and usage.
|
||||
### 7. Common Issues
|
||||
- List common problems and their solutions.
|
||||
|
||||
## VERIFICATION CHECKLIST ✓
|
||||
□ The module's purpose, scope, and boundaries are clearly defined
|
||||
□ Core concepts are explained for better understanding
|
||||
□ Usage examples are practical and demonstrate real-world scenarios
|
||||
□ All dependencies and configuration options are documented
|
||||
## Verification Checklist
|
||||
Before finalizing output, verify:
|
||||
- [ ] Module purpose, scope, and boundaries are clear
|
||||
- [ ] Core concepts are explained
|
||||
- [ ] Usage examples are practical and realistic
|
||||
- [ ] Dependencies and configuration are documented
|
||||
|
||||
Focus: Explaining the module's purpose and usage, not just its API.
|
||||
## Focus
|
||||
Explain module purpose and usage, not just API details.
|
||||
@@ -1,51 +1,51 @@
|
||||
# 软件架构规划模板
|
||||
# AI Persona & Core Mission
|
||||
|
||||
You are a **Distinguished Senior Software Architect and Strategic Technical Planner**. Your primary function is to conduct a meticulous and insightful analysis of provided code, project context, and user requirements to devise an exceptionally clear, comprehensive, actionable, and forward-thinking modification plan. **Critically, you will *not* write or generate any code yourself; your entire output will be a detailed modification plan articulated in precise, professional Chinese.** You are an expert in anticipating dependencies, potential impacts, and ensuring the proposed plan is robust, maintainable, and scalable.
|
||||
## Role & Output Requirements
|
||||
|
||||
## II. ROLE DEFINITION & CORE CAPABILITIES
|
||||
1. **Role**: Distinguished Senior Software Architect and Strategic Technical Planner.
|
||||
2. **Core Capabilities**:
|
||||
* **Deep Code Comprehension**: Ability to rapidly understand complex existing codebases (structure, patterns, dependencies, data flow, control flow).
|
||||
* **Requirements Analysis & Distillation**: Skill in dissecting user requirements, identifying core needs, and translating them into technical planning objectives.
|
||||
* **Software Design Principles**: Strong grasp of SOLID, DRY, KISS, design patterns, and architectural best practices.
|
||||
* **Impact Analysis & Risk Assessment**: Expertise in identifying potential side effects, inter-module dependencies, and risks associated with proposed changes.
|
||||
* **Strategic Planning**: Ability to formulate logical, step-by-step modification plans that are efficient and minimize disruption.
|
||||
* **Clear Technical Communication (Chinese)**: Excellence in conveying complex technical plans and considerations in clear, unambiguous Chinese for a developer audience.
|
||||
* **Visual Logic Representation**: Ability to sketch out intended logic flows using concise diagrammatic notations.
|
||||
3. **Core Thinking Mode**:
|
||||
* **Systematic & Holistic**: Approach analysis and planning with a comprehensive view of the system.
|
||||
* **Critical & Forward-Thinking**: Evaluate requirements critically and plan for future maintainability and scalability.
|
||||
* **Problem-Solver**: Focus on devising effective solutions through planning.
|
||||
* **Chain-of-Thought (CoT) Driven**: Explicitly articulate your reasoning process, especially when making design choices within the plan.
|
||||
**Role**: Software architect specializing in technical planning
|
||||
**Output Format**: Modification plan in Chinese following the specified structure
|
||||
**Constraints**: Do NOT write or generate code. Provide planning and strategy only.
|
||||
|
||||
## III. OBJECTIVES
|
||||
1. **Thoroughly Understand Context**: Analyze user-provided code, modification requirements, and project background to gain a deep understanding of the existing system and the goals of the modification.
|
||||
2. **Meticulous Code Analysis for Planning**: Identify all relevant code sections, their current logic, and how they interrelate, quoting relevant snippets for context.
|
||||
3. **Devise Actionable Modification Plan**: Create a detailed, step-by-step plan outlining *what* changes are needed, *where* they should occur, *why* they are necessary, and the *intended logic* of the new/modified code.
|
||||
4. **Illustrate Intended Logic**: For each significant logical change proposed, visually represent the *intended* new or modified control flow and data flow using a concise call flow diagram.
|
||||
5. **Contextualize for Implementation**: Provide all necessary contextual information (variables, data structures, dependencies, potential side effects) to enable a developer to implement the plan accurately.
|
||||
6. **Professional Chinese Output**: Produce a highly structured, professional planning document entirely in Chinese, adhering to the specified Markdown format.
|
||||
7. **Show Your Work (CoT)**: Before presenting the plan, outline your analytical framework, key considerations, and how you approached the planning task.
|
||||
## Core Capabilities
|
||||
- Understand complex codebases (structure, patterns, dependencies, data flow)
|
||||
- Analyze requirements and translate to technical objectives
|
||||
- Apply software design principles (SOLID, DRY, KISS, design patterns)
|
||||
- Assess impacts, dependencies, and risks
|
||||
- Create step-by-step modification plans
|
||||
|
||||
## IV. INPUT SPECIFICATIONS
|
||||
1. **Code Snippets/File Information**: User-provided source code, file names, paths, or descriptions of relevant code sections.
|
||||
2. **Modification Requirements**: Specific instructions or goals for what needs to be changed or achieved.
|
||||
3. **Project Context (Optional)**: Any background information about the project or system.
|
||||
## Planning Process (Required)
|
||||
**Before providing your final plan, you MUST:**
|
||||
1. Analyze requirements and identify technical objectives
|
||||
2. Explore existing code structure and patterns
|
||||
3. Identify modification points and formulate strategy
|
||||
4. Assess dependencies and risks
|
||||
5. Present structured modification plan
|
||||
|
||||
## V. RESPONSE STRUCTURE & CONTENT (Strictly Adhere - Output in Chinese)
|
||||
## Objectives
|
||||
1. Understand context (code, requirements, project background)
|
||||
2. Analyze relevant code sections and their relationships
|
||||
3. Create step-by-step modification plan (what, where, why, how)
|
||||
4. Illustrate intended logic using call flow diagrams
|
||||
5. Provide implementation context (variables, dependencies, side effects)
|
||||
|
||||
Your response **MUST** be in Chinese and structured in Markdown as follows:
|
||||
## Input
|
||||
- Code snippets or file locations
|
||||
- Modification requirements and goals
|
||||
- Project context (if available)
|
||||
|
||||
## Output Structure (Required)
|
||||
|
||||
Output in Chinese using this Markdown structure:
|
||||
|
||||
---
|
||||
|
||||
### 0. 思考过程与规划策略 (Thinking Process & Planning Strategy)
|
||||
* *(在此处,您必须结构化地展示您的分析框架和规划流程。)*
|
||||
* **1. 需求解析 (Requirement Analysis):** 我首先将用户的原始需求进行拆解和澄清,确保完全理解其核心目标和边界条件。
|
||||
* **2. 现有代码结构勘探 (Existing Code Exploration):** 基于提供的代码片段,我将分析其当前的结构、逻辑流和关键数据对象,以建立修改的基线。
|
||||
* **3. 核心修改点识别与策略制定 (Identification of Core Modification Points & Strategy Formulation):** 我将识别出需要修改的关键代码位置,并为每个修改点制定高级别的技术策略(例如,是重构、新增还是调整)。
|
||||
* **4. 依赖与风险评估 (Dependency & Risk Assessment):** 我会评估提议的修改可能带来的模块间依赖关系变化,以及潜在的风险(如性能下降、兼容性问题、边界情况处理不当等)。
|
||||
* **5. 规划文档结构设计 (Plan Document Structuring):** 最后,我将依据上述分析,按照指定的格式组织并撰写这份详细的修改规划方案。
|
||||
Present your planning process in these steps:
|
||||
1. **需求解析**: Break down requirements and clarify core objectives
|
||||
2. **代码结构勘探**: Analyze current code structure and logic flow
|
||||
3. **核心修改点识别**: Identify modification points and formulate strategy
|
||||
4. **依赖与风险评估**: Assess dependencies and risks
|
||||
5. **规划文档组织**: Organize planning document
|
||||
|
||||
### **代码修改规划方案 (Code Modification Plan)**
|
||||
|
||||
@@ -93,25 +93,17 @@ Your response **MUST** be in Chinese and structured in Markdown as follows:
|
||||
---
|
||||
*(对每个需要修改的文件重复上述格式)*
|
||||
|
||||
## VI. STYLE & TONE (Chinese Output)
|
||||
* **Professional & Authoritative**: Maintain a formal, expert tone befitting a Senior Architect.
|
||||
* **Analytical & Insightful**: Demonstrate deep understanding and strategic thinking.
|
||||
* **Precise & Unambiguous**: Use clear, exact technical Chinese terminology.
|
||||
* **Structured & Actionable**: Ensure the plan is well-organized and provides clear guidance.
|
||||
## Key Requirements
|
||||
1. **Language**: All output in Chinese
|
||||
2. **No Code Generation**: Do not write actual code. Provide descriptive modification plan only
|
||||
3. **Focus**: Detail what and why. Use logic sketches to illustrate how
|
||||
4. **Completeness**: State assumptions clearly when information is incomplete
|
||||
|
||||
## VII. KEY DIRECTIVES & CONSTRAINTS
|
||||
1. **Language**: **All** descriptive parts of your plan **MUST** be in **Chinese**.
|
||||
2. **No Code Generation**: **Strictly refrain** from writing, suggesting, or generating any actual code. Your output is *purely* a descriptive modification plan.
|
||||
3. **Focus on What and Why, Illustrate How (Logic Sketch)**: Detail what needs to be done and why. The call flow sketch illustrates the *intended how* at a logical level, not implementation code.
|
||||
4. **Completeness & Accuracy**: Ensure the plan is comprehensive. If information is insufficient, state assumptions clearly in the 思考过程 (Thinking Process) and 必要上下文 (Necessary Context).
|
||||
5. **Professional Standard**: Your plan should meet the standards expected of a senior technical document, suitable for guiding development work.
|
||||
|
||||
## VIII. SELF-CORRECTION / REFLECTION
|
||||
* Before finalizing your response, review it to ensure:
|
||||
* The 思考过程 (Thinking Process) clearly outlines your structured analytical approach.
|
||||
* All user requirements from 需求分析 have been addressed in the plan.
|
||||
* The modification plan is logical, actionable, and sufficiently detailed, with relevant original code snippets for context.
|
||||
* The 修改理由 (Reason for Modification) explicitly links back to the initial requirements.
|
||||
* All crucial context and risks are highlighted.
|
||||
* The entire output is in professional, clear Chinese and adheres to the specified Markdown structure.
|
||||
* You have strictly avoided generating any code.
|
||||
## Self-Review Checklist
|
||||
Before providing final output, verify:
|
||||
- [ ] Thinking process outlines structured analytical approach
|
||||
- [ ] All requirements addressed in the plan
|
||||
- [ ] Plan is logical, actionable, and detailed
|
||||
- [ ] Modification reasons link back to requirements
|
||||
- [ ] Context and risks are highlighted
|
||||
- [ ] No actual code generated
|
||||
|
||||
@@ -253,300 +253,6 @@ flowchart TD
|
||||
|
||||
---
|
||||
|
||||
### 7️⃣ **CLI 工具协作模式 - 多模型智能协同**
|
||||
|
||||
本项目集成了三种 CLI 工具,支持灵活的串联、并行和混合执行方式:
|
||||
|
||||
| 工具 | 核心能力 | 上下文长度 | 适用场景 |
|
||||
|------|---------|-----------|---------|
|
||||
| **Gemini** | 深度分析、架构设计、规划 | 超长上下文 | 代码理解、执行流追踪、技术方案评估 |
|
||||
| **Qwen** | 代码审查、模式识别 | 超长上下文 | Gemini 备选、多维度分析 |
|
||||
| **Codex** | 精确代码撰写、Bug定位 | 标准上下文 | 功能实现、测试生成、代码重构 |
|
||||
|
||||
#### 📋 三种执行模式
|
||||
|
||||
**1. 串联执行(Serial Execution)** - 顺序依赖
|
||||
|
||||
适用场景:后续任务依赖前一任务的结果
|
||||
|
||||
```bash
|
||||
# 示例:分析后实现
|
||||
# Step 1: Gemini 分析架构
|
||||
使用 gemini 分析认证模块的架构设计,识别关键组件和数据流
|
||||
|
||||
# Step 2: Codex 基于分析结果实现
|
||||
让 codex 根据上述架构分析,实现 JWT 认证中间件
|
||||
```
|
||||
|
||||
**执行流程**:
|
||||
```
|
||||
Gemini 分析 → 输出架构报告 → Codex 读取报告 → 实现代码
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
**2. 并行执行(Parallel Execution)** - 同时进行
|
||||
|
||||
适用场景:多个独立任务,无依赖关系
|
||||
|
||||
```bash
|
||||
# 示例:多维度分析
|
||||
用 gemini 分析认证模块的安全性,关注 JWT、密码存储、会话管理
|
||||
用 qwen 分析认证模块的性能瓶颈,识别慢查询和优化点
|
||||
让 codex 为认证模块生成单元测试,覆盖所有核心功能
|
||||
```
|
||||
|
||||
**执行流程**:
|
||||
```
|
||||
┌─ Gemini: 安全分析 ─┐
|
||||
并行 ───┼─ Qwen: 性能分析 ──┼─→ 汇总结果
|
||||
└─ Codex: 测试生成 ─┘
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
**3. 混合执行(Hybrid Execution)** - 串并结合
|
||||
|
||||
适用场景:复杂任务,部分并行、部分串联
|
||||
|
||||
```bash
|
||||
# 示例:完整功能开发
|
||||
# Phase 1: 并行分析(独立任务)
|
||||
使用 gemini 分析现有认证系统的架构模式
|
||||
用 qwen 评估 OAuth2 集成的技术方案
|
||||
|
||||
# Phase 2: 串联实现(依赖 Phase 1)
|
||||
让 codex 基于上述分析,实现 OAuth2 认证流程
|
||||
|
||||
# Phase 3: 并行优化(独立任务)
|
||||
用 gemini 审查代码质量和安全性
|
||||
让 codex 生成集成测试
|
||||
```
|
||||
|
||||
**执行流程**:
|
||||
```
|
||||
Phase 1: Gemini 分析 ──┐
|
||||
Qwen 评估 ────┼─→ Phase 2: Codex 实现 ──→ Phase 3: Gemini 审查 ──┐
|
||||
│ Codex 测试 ──┼─→ 完成
|
||||
└────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
#### 🎯 语义调用 vs 命令调用
|
||||
|
||||
**方式一:自然语言语义调用**(推荐)
|
||||
|
||||
```bash
|
||||
# 用户只需自然描述,Claude Code 自动调用工具
|
||||
"使用 gemini 分析这个模块的依赖关系"
|
||||
→ Claude Code 自动生成:cd src && gemini -p "分析依赖关系"
|
||||
|
||||
"让 codex 实现用户注册功能"
|
||||
→ Claude Code 自动生成:codex -C src/auth --full-auto exec "实现注册"
|
||||
```
|
||||
|
||||
**方式二:直接命令调用**
|
||||
|
||||
```bash
|
||||
# 通过 Slash 命令精准调用
|
||||
/cli:chat --tool gemini "解释这个算法"
|
||||
/cli:analyze --tool qwen "分析性能瓶颈"
|
||||
/cli:execute --tool codex "优化查询性能"
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
#### 🔗 CLI 结果作为上下文(Memory)
|
||||
|
||||
CLI 工具的分析结果可以被保存并作为后续操作的上下文(memory),实现智能化的工作流程:
|
||||
|
||||
**1. 结果持久化**
|
||||
|
||||
```bash
|
||||
# CLI 执行结果自动保存到会话目录
|
||||
/cli:chat --tool gemini "分析认证模块架构"
|
||||
→ 保存到:.workflow/active/WFS-xxx/.chat/chat-[timestamp].md
|
||||
|
||||
/cli:analyze --tool qwen "评估性能瓶颈"
|
||||
→ 保存到:.workflow/active/WFS-xxx/.chat/analyze-[timestamp].md
|
||||
|
||||
/cli:execute --tool codex "实现功能"
|
||||
→ 保存到:.workflow/active/WFS-xxx/.chat/execute-[timestamp].md
|
||||
```
|
||||
|
||||
**2. 结果作为规划依据**
|
||||
|
||||
```bash
|
||||
# Step 1: 分析现状(生成 memory)
|
||||
使用 gemini 深度分析认证系统的架构、安全性和性能问题
|
||||
→ 输出:详细分析报告(自动保存)
|
||||
|
||||
# Step 2: 基于分析结果规划
|
||||
/workflow:plan "根据上述 Gemini 分析报告重构认证系统"
|
||||
→ 系统自动读取 .chat/ 中的分析报告作为上下文
|
||||
→ 生成精准的实施计划
|
||||
```
|
||||
|
||||
**3. 结果作为实现依据**
|
||||
|
||||
```bash
|
||||
# Step 1: 并行分析(生成多个 memory)
|
||||
使用 gemini 分析现有代码结构
|
||||
用 qwen 评估技术方案可行性
|
||||
→ 输出:多份分析报告
|
||||
|
||||
# Step 2: 基于所有分析结果实现
|
||||
让 codex 综合上述 Gemini 和 Qwen 的分析,实现最优方案
|
||||
→ Codex 自动读取前序分析结果
|
||||
→ 生成符合架构设计的代码
|
||||
```
|
||||
|
||||
**4. 跨会话引用**
|
||||
|
||||
```bash
|
||||
# 引用历史会话的分析结果
|
||||
/cli:execute --tool codex "参考 WFS-2024-001 中的架构分析,实现新的支付模块"
|
||||
→ 系统自动加载指定会话的上下文
|
||||
→ 基于历史分析进行实现
|
||||
```
|
||||
|
||||
**5. Memory 更新循环**
|
||||
|
||||
```bash
|
||||
# 迭代优化流程
|
||||
使用 gemini 分析当前实现的问题
|
||||
→ 生成问题报告(memory)
|
||||
|
||||
让 codex 根据问题报告优化代码
|
||||
→ 实现改进(更新 memory)
|
||||
|
||||
用 qwen 验证优化效果
|
||||
→ 验证报告(追加 memory)
|
||||
|
||||
# 所有结果累积为完整的项目 memory
|
||||
→ 支持后续决策和实现
|
||||
```
|
||||
|
||||
**Memory 流转示例**:
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Phase 1: 分析阶段(生成 Memory) │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ Gemini 分析 → 架构分析报告 (.chat/analyze-001.md) │
|
||||
│ Qwen 评估 → 方案评估报告 (.chat/analyze-002.md) │
|
||||
└─────────────────────┬───────────────────────────────────────┘
|
||||
│ 作为 Memory 输入
|
||||
↓
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Phase 2: 规划阶段(使用 Memory) │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ /workflow:plan → 读取分析报告 → 生成实施计划 │
|
||||
│ (.task/IMPL-*.json) │
|
||||
└─────────────────────┬───────────────────────────────────────┘
|
||||
│ 作为 Memory 输入
|
||||
↓
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Phase 3: 实现阶段(使用 Memory) │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ Codex 实现 → 读取计划+分析 → 生成代码 │
|
||||
│ (.chat/execute-001.md) │
|
||||
└─────────────────────┬───────────────────────────────────────┘
|
||||
│ 作为 Memory 输入
|
||||
↓
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Phase 4: 验证阶段(使用 Memory) │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ Gemini 审查 → 读取实现代码 → 质量报告 │
|
||||
│ (.chat/review-001.md) │
|
||||
└─────────────────────────────────────────────────────────────┘
|
||||
│
|
||||
↓
|
||||
完整的项目 Memory 库
|
||||
支持未来所有决策和实现
|
||||
```
|
||||
|
||||
**最佳实践**:
|
||||
|
||||
1. **保持连续性**:在同一会话中执行相关任务,自动共享 memory
|
||||
2. **显式引用**:跨会话时明确引用历史分析(如"参考 WFS-xxx 的分析")
|
||||
3. **增量更新**:每次分析和实现都追加到 memory,形成完整的决策链
|
||||
4. **定期整理**:使用 `/memory:update-related` 将 CLI 结果整合到 CLAUDE.md
|
||||
5. **质量优先**:高质量的分析 memory 能显著提升后续实现质量
|
||||
|
||||
---
|
||||
|
||||
#### 🔄 工作流集成示例
|
||||
|
||||
**集成到 Lite 工作流**:
|
||||
|
||||
```bash
|
||||
# 1. 规划阶段:Gemini 分析
|
||||
/workflow:lite-plan -e "重构支付模块"
|
||||
→ 三维确认选择 "CLI 工具执行"
|
||||
|
||||
# 2. 执行阶段:选择执行方式
|
||||
# 选项 A: 串联执行
|
||||
→ "使用 gemini 分析支付流程" → "让 codex 重构代码"
|
||||
|
||||
# 选项 B: 并行分析 + 串联实现
|
||||
→ "用 gemini 分析架构" + "用 qwen 评估方案"
|
||||
→ "让 codex 基于分析结果重构"
|
||||
```
|
||||
|
||||
**集成到 Full 工作流**:
|
||||
|
||||
```bash
|
||||
# 1. 规划阶段
|
||||
/workflow:plan "实现分布式缓存"
|
||||
/workflow:action-plan-verify
|
||||
|
||||
# 2. 分析阶段(并行)
|
||||
使用 gemini 分析现有缓存架构
|
||||
用 qwen 评估 Redis 集群方案
|
||||
|
||||
# 3. 实现阶段(串联)
|
||||
/workflow:execute # 或使用 CLI
|
||||
让 codex 实现 Redis 集群集成
|
||||
|
||||
# 4. 测试阶段(并行)
|
||||
/workflow:test-gen WFS-cache
|
||||
→ 内部使用 gemini 分析 + codex 生成测试
|
||||
|
||||
# 5. 审查阶段(串联)
|
||||
用 gemini 审查代码质量
|
||||
/workflow:review --type architecture
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
#### 💡 最佳实践
|
||||
|
||||
**何时使用串联**:
|
||||
- 实现依赖设计方案
|
||||
- 测试依赖代码实现
|
||||
- 优化依赖性能分析
|
||||
|
||||
**何时使用并行**:
|
||||
- 多维度分析(安全+性能+架构)
|
||||
- 多模块独立开发
|
||||
- 同时生成代码和测试
|
||||
|
||||
**何时使用混合**:
|
||||
- 复杂功能开发(分析→设计→实现→测试)
|
||||
- 大规模重构(评估→规划→执行→验证)
|
||||
- 技术栈迁移(调研→方案→实施→优化)
|
||||
|
||||
**工具选择建议**:
|
||||
1. **需要理解代码** → Gemini(首选)或 Qwen
|
||||
2. **需要编写代码** → Codex
|
||||
3. **复杂分析** → Gemini + Qwen 并行(互补验证)
|
||||
4. **精确实现** → Codex(基于 Gemini 分析)
|
||||
5. **快速原型** → 直接使用 Codex
|
||||
|
||||
---
|
||||
|
||||
## 🔄 典型场景完整流程
|
||||
|
||||
### 场景A:新功能开发(知道怎么做)
|
||||
|
||||
@@ -253,300 +253,6 @@ flowchart TD
|
||||
|
||||
---
|
||||
|
||||
### 7️⃣ **CLI Tools Collaboration Mode - Multi-Model Intelligent Coordination**
|
||||
|
||||
This project integrates three CLI tools supporting flexible serial, parallel, and hybrid execution:
|
||||
|
||||
| Tool | Core Capabilities | Context Length | Use Cases |
|
||||
|------|------------------|----------------|-----------|
|
||||
| **Gemini** | Deep analysis, architecture design, planning | Ultra-long context | Code understanding, execution flow tracing, technical solution evaluation |
|
||||
| **Qwen** | Code review, pattern recognition | Ultra-long context | Gemini alternative, multi-dimensional analysis |
|
||||
| **Codex** | Precise code writing, bug location | Standard context | Feature implementation, test generation, code refactoring |
|
||||
|
||||
#### 📋 Three Execution Modes
|
||||
|
||||
**1. Serial Execution** - Sequential dependency
|
||||
|
||||
Use case: Subsequent tasks depend on previous results
|
||||
|
||||
```bash
|
||||
# Example: Analyze then implement
|
||||
# Step 1: Gemini analyzes architecture
|
||||
Use gemini to analyze the authentication module's architecture design, identify key components and data flow
|
||||
|
||||
# Step 2: Codex implements based on analysis
|
||||
Have codex implement JWT authentication middleware based on the above architecture analysis
|
||||
```
|
||||
|
||||
**Execution flow**:
|
||||
```
|
||||
Gemini analysis → Output architecture report → Codex reads report → Implement code
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
**2. Parallel Execution** - Concurrent processing
|
||||
|
||||
Use case: Multiple independent tasks with no dependencies
|
||||
|
||||
```bash
|
||||
# Example: Multi-dimensional analysis
|
||||
Use gemini to analyze authentication module security, focus on JWT, password storage, session management
|
||||
Use qwen to analyze authentication module performance bottlenecks, identify slow queries and optimization points
|
||||
Have codex generate unit tests for authentication module, covering all core features
|
||||
```
|
||||
|
||||
**Execution flow**:
|
||||
```
|
||||
┌─ Gemini: Security analysis ─┐
|
||||
Parallel ┼─ Qwen: Performance analysis ┼─→ Aggregate results
|
||||
└─ Codex: Test generation ────┘
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
**3. Hybrid Execution** - Combined serial and parallel
|
||||
|
||||
Use case: Complex tasks with both parallel and serial phases
|
||||
|
||||
```bash
|
||||
# Example: Complete feature development
|
||||
# Phase 1: Parallel analysis (independent tasks)
|
||||
Use gemini to analyze existing authentication system architecture patterns
|
||||
Use qwen to evaluate OAuth2 integration technical solutions
|
||||
|
||||
# Phase 2: Serial implementation (depends on Phase 1)
|
||||
Have codex implement OAuth2 authentication flow based on above analysis
|
||||
|
||||
# Phase 3: Parallel optimization (independent tasks)
|
||||
Use gemini to review code quality and security
|
||||
Have codex generate integration tests
|
||||
```
|
||||
|
||||
**Execution flow**:
|
||||
```
|
||||
Phase 1: Gemini analysis ──┐
|
||||
Qwen evaluation ──┼─→ Phase 2: Codex implementation ──→ Phase 3: Gemini review ──┐
|
||||
│ Codex tests ───┼─→ Complete
|
||||
└──────────────────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
#### 🎯 Semantic Invocation vs Command Invocation
|
||||
|
||||
**Method 1: Natural Language Semantic Invocation** (Recommended)
|
||||
|
||||
```bash
|
||||
# Users simply describe naturally, Claude Code auto-invokes tools
|
||||
"Use gemini to analyze this module's dependencies"
|
||||
→ Claude Code auto-generates: cd src && gemini -p "Analyze dependencies"
|
||||
|
||||
"Have codex implement user registration feature"
|
||||
→ Claude Code auto-generates: codex -C src/auth --full-auto exec "Implement registration"
|
||||
```
|
||||
|
||||
**Method 2: Direct Command Invocation**
|
||||
|
||||
```bash
|
||||
# Precise invocation via Slash commands
|
||||
/cli:chat --tool gemini "Explain this algorithm"
|
||||
/cli:analyze --tool qwen "Analyze performance bottlenecks"
|
||||
/cli:execute --tool codex "Optimize query performance"
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
#### 🔗 CLI Results as Context (Memory)
|
||||
|
||||
CLI tool analysis results can be saved and used as context (memory) for subsequent operations, enabling intelligent workflows:
|
||||
|
||||
**1. Result Persistence**
|
||||
|
||||
```bash
|
||||
# CLI execution results automatically saved to session directory
|
||||
/cli:chat --tool gemini "Analyze authentication module architecture"
|
||||
→ Saved to: .workflow/active/WFS-xxx/.chat/chat-[timestamp].md
|
||||
|
||||
/cli:analyze --tool qwen "Evaluate performance bottlenecks"
|
||||
→ Saved to: .workflow/active/WFS-xxx/.chat/analyze-[timestamp].md
|
||||
|
||||
/cli:execute --tool codex "Implement feature"
|
||||
→ Saved to: .workflow/active/WFS-xxx/.chat/execute-[timestamp].md
|
||||
```
|
||||
|
||||
**2. Results as Planning Basis**
|
||||
|
||||
```bash
|
||||
# Step 1: Analyze current state (generate memory)
|
||||
Use gemini to deeply analyze authentication system architecture, security, and performance issues
|
||||
→ Output: Detailed analysis report (auto-saved)
|
||||
|
||||
# Step 2: Plan based on analysis results
|
||||
/workflow:plan "Refactor authentication system based on above Gemini analysis report"
|
||||
→ System automatically reads analysis reports from .chat/ as context
|
||||
→ Generate precise implementation plan
|
||||
```
|
||||
|
||||
**3. Results as Implementation Basis**
|
||||
|
||||
```bash
|
||||
# Step 1: Parallel analysis (generate multiple memories)
|
||||
Use gemini to analyze existing code structure
|
||||
Use qwen to evaluate technical solution feasibility
|
||||
→ Output: Multiple analysis reports
|
||||
|
||||
# Step 2: Implement based on all analysis results
|
||||
Have codex synthesize above Gemini and Qwen analyses to implement optimal solution
|
||||
→ Codex automatically reads prior analysis results
|
||||
→ Generate code conforming to architecture design
|
||||
```
|
||||
|
||||
**4. Cross-Session References**
|
||||
|
||||
```bash
|
||||
# Reference historical session analysis results
|
||||
/cli:execute --tool codex "Refer to architecture analysis in WFS-2024-001, implement new payment module"
|
||||
→ System automatically loads specified session context
|
||||
→ Implement based on historical analysis
|
||||
```
|
||||
|
||||
**5. Memory Update Loop**
|
||||
|
||||
```bash
|
||||
# Iterative optimization flow
|
||||
Use gemini to analyze problems in current implementation
|
||||
→ Generate problem report (memory)
|
||||
|
||||
Have codex optimize code based on problem report
|
||||
→ Implement improvements (update memory)
|
||||
|
||||
Use qwen to verify optimization effectiveness
|
||||
→ Verification report (append to memory)
|
||||
|
||||
# All results accumulate as complete project memory
|
||||
→ Support subsequent decisions and implementation
|
||||
```
|
||||
|
||||
**Memory Flow Example**:
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Phase 1: Analysis Phase (Generate Memory) │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ Gemini analysis → Architecture report (.chat/analyze-001.md)│
|
||||
│ Qwen evaluation → Solution report (.chat/analyze-002.md) │
|
||||
└─────────────────────┬───────────────────────────────────────┘
|
||||
│ As Memory Input
|
||||
↓
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Phase 2: Planning Phase (Use Memory) │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ /workflow:plan → Read analysis reports → Generate plan │
|
||||
│ (.task/IMPL-*.json) │
|
||||
└─────────────────────┬───────────────────────────────────────┘
|
||||
│ As Memory Input
|
||||
↓
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Phase 3: Implementation Phase (Use Memory) │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ Codex implement → Read plan+analysis → Generate code │
|
||||
│ (.chat/execute-001.md) │
|
||||
└─────────────────────┬───────────────────────────────────────┘
|
||||
│ As Memory Input
|
||||
↓
|
||||
┌─────────────────────────────────────────────────────────────┐
|
||||
│ Phase 4: Verification Phase (Use Memory) │
|
||||
├─────────────────────────────────────────────────────────────┤
|
||||
│ Gemini review → Read implementation code → Quality report│
|
||||
│ (.chat/review-001.md) │
|
||||
└─────────────────────────────────────────────────────────────┘
|
||||
│
|
||||
↓
|
||||
Complete Project Memory Library
|
||||
Supporting All Future Decisions and Implementation
|
||||
```
|
||||
|
||||
**Best Practices**:
|
||||
|
||||
1. **Maintain Continuity**: Execute related tasks in the same session to automatically share memory
|
||||
2. **Explicit References**: Explicitly reference historical analyses when crossing sessions (e.g., "Refer to WFS-xxx analysis")
|
||||
3. **Incremental Updates**: Each analysis and implementation appends to memory, forming complete decision chain
|
||||
4. **Regular Organization**: Use `/memory:update-related` to consolidate CLI results into CLAUDE.md
|
||||
5. **Quality First**: High-quality analysis memory significantly improves subsequent implementation quality
|
||||
|
||||
---
|
||||
|
||||
#### 🔄 Workflow Integration Examples
|
||||
|
||||
**Integration with Lite Workflow**:
|
||||
|
||||
```bash
|
||||
# 1. Planning phase: Gemini analysis
|
||||
/workflow:lite-plan -e "Refactor payment module"
|
||||
→ Three-dimensional confirmation selects "CLI Tools execution"
|
||||
|
||||
# 2. Execution phase: Choose execution method
|
||||
# Option A: Serial execution
|
||||
→ "Use gemini to analyze payment flow" → "Have codex refactor code"
|
||||
|
||||
# Option B: Parallel analysis + Serial implementation
|
||||
→ "Use gemini to analyze architecture" + "Use qwen to evaluate solution"
|
||||
→ "Have codex refactor based on analysis results"
|
||||
```
|
||||
|
||||
**Integration with Full Workflow**:
|
||||
|
||||
```bash
|
||||
# 1. Planning phase
|
||||
/workflow:plan "Implement distributed cache"
|
||||
/workflow:action-plan-verify
|
||||
|
||||
# 2. Analysis phase (parallel)
|
||||
Use gemini to analyze existing cache architecture
|
||||
Use qwen to evaluate Redis cluster solution
|
||||
|
||||
# 3. Implementation phase (serial)
|
||||
/workflow:execute # Or use CLI
|
||||
Have codex implement Redis cluster integration
|
||||
|
||||
# 4. Testing phase (parallel)
|
||||
/workflow:test-gen WFS-cache
|
||||
→ Internally uses gemini analysis + codex test generation
|
||||
|
||||
# 5. Review phase (serial)
|
||||
Use gemini to review code quality
|
||||
/workflow:review --type architecture
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
#### 💡 Best Practices
|
||||
|
||||
**When to use serial**:
|
||||
- Implementation depends on design solution
|
||||
- Testing depends on code implementation
|
||||
- Optimization depends on performance analysis
|
||||
|
||||
**When to use parallel**:
|
||||
- Multi-dimensional analysis (security + performance + architecture)
|
||||
- Multi-module independent development
|
||||
- Simultaneous code and test generation
|
||||
|
||||
**When to use hybrid**:
|
||||
- Complex feature development (analysis → design → implementation → testing)
|
||||
- Large-scale refactoring (evaluation → planning → execution → verification)
|
||||
- Tech stack migration (research → solution → implementation → optimization)
|
||||
|
||||
**Tool selection guidelines**:
|
||||
1. **Need to understand code** → Gemini (preferred) or Qwen
|
||||
2. **Need to write code** → Codex
|
||||
3. **Complex analysis** → Gemini + Qwen parallel (complementary verification)
|
||||
4. **Precise implementation** → Codex (based on Gemini analysis)
|
||||
5. **Quick prototype** → Direct Codex usage
|
||||
|
||||
---
|
||||
|
||||
## 🔄 Complete Flow for Typical Scenarios
|
||||
|
||||
### Scenario A: New Feature Development (Know How to Build)
|
||||
|
||||
Reference in New Issue
Block a user